1. 难度:中等 | |
下列所给出的数中,是无理数的是( ) A.2 B. C. D.0.1 |
2. 难度:中等 | |
下列图形中,是中心对称图形但不是轴对称图形的是( ) A. B. C. D. |
3. 难度:中等 | |
小杰从正面(图示“主视方向”)观察左边的热水瓶时,得到的俯视图是( ) A. B. C. D. |
4. 难度:中等 | |
2011年9月第九届全国少数民族传统体育运动会将在贵阳举行,为营造一个清洁、优美、舒适的美好贵阳,2011年3月贵阳市启动了“自己动手,美化贵阳”活动,在活动过程中,志愿者们陆续发放了 50000份倡议书,50000这个数用科学记数法表示为( ) A.5xlO5 B.5xlO4 C.0.5x105 D.0.5x104 |
5. 难度:中等 | |
下列运算正确的是( ) A.3-1÷3=1 B. C.|3.14-π|=3.14-π D. |
6. 难度:中等 | |
如图,△ABC是⊙O的内接三角形,若∠ABC=70°,则∠AOC的度数等于( ) A.140° B.130° C.120° D.110° |
7. 难度:中等 | |
如图所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,BD=5,则点D到BC的距离是( ) A.3 B.4 C.5 D.6 |
8. 难度:中等 | |
若函数,则当函数值y=8时,自变量x的值是( ) A.± B.4 C.±或4 D.4或- |
9. 难度:中等 | |
跟我学剪五角星:如图,先将一张长方形纸片按图①的虚线对折,得到图②,然后将图②沿虚线折叠得到图③,再将图③沿虚线BC剪下△ABC,展开即可得到一个五角星.若想得到一个正五角星(如图④,正五角星的5个角都是36°),则在图③中应沿什么角度剪即∠ABC的度数为( ) A.126° B.108° C.90° D.72° |
10. 难度:中等 | |
如图,王虎使一长为4cm,宽为3cm的长方形木板,在桌面上做无滑动的翻滚(顺时针方向)木板上点A位置变化为A→A1→A2,其中第二次翻滚被桌面上一小木块挡住,使木板与桌面成30°角,则点A翻滚到A2位置时共走过的路径长为( ) A.10cm B.4πcm C. D. |
11. 难度:中等 | |
“情系玉树大爱无疆”.在为青海玉树的捐款活动中,某小组7位同学的捐款数额(元)分别是:5,20,5,50,10,5,10.则这组数据的中位数是 元. |
12. 难度:中等 | |
分解因式:m3-4m= . |
13. 难度:中等 | |
如图,ED∥AB,AF交ED于点C,∠ECF=138°,则∠A= 度. |
14. 难度:中等 | |
如图,∠BAC位于6×6的方格纸中,则tan∠BAC= . |
15. 难度:中等 | |
如图所示,半圆AB平移到半圆CD的位置时所扫过的面积为 . |
16. 难度:中等 | |
如图,在▱ABCD中,对角线AC与BD相交于点O,在不添加任何辅助线和字母的情况下,请添加一个条件,使▱ABCD变为矩形,需添加的条件是 (写出一个即可). |
17. 难度:中等 | |
如图,已知点A的坐标为(,3),AB丄x轴,垂足为B,连接OA,反比例函数y=(k>0)的图象与线段OA、AB分别交于点C、D.若AB=3BD,以点C为圆心,CA的倍的长为半径作圆,则该圆与x轴的位置关系是 (填”相离”,“相切”或“相交“). |
18. 难度:中等 | |
如图,△ABC是一个边长为2的等边三角形,AD⊥BC,垂足为点D.过点D作DD1⊥AB,垂足为点D1;再过点D1作D1D2⊥AD,垂足为点D2;又过点D2作D2D3⊥AB,垂足为点D3;…;这样一直作下去,得到一组线段:DD1,D1D2,D2D3,…,则线段Dn-1Dn的长为 (n为正整数). |
19. 难度:中等 | |
计算:2sin45°+(π-3.14)++(-1)3. |
20. 难度:中等 | |
已知是关于x,y的二元一次方程的解,求(a+1)(a-1)+7的值. |
21. 难度:中等 | |
解方程:. |
22. 难度:中等 | |
机器人“海宝”在某圆形区域表演“按指令行走”,如图所示,“海宝”从圆心O出发,先沿北偏西67.4°方向行走13米至点A处,再沿正南方向行走14米至点B处,最后沿正东方向行走至点C处,点B、C都在圆O上. (1)求弦BC的长;(2)求圆O的半径长. (本题参考数据:sin67.4°=,cos67.4°=,tan67.4°=) |
23. 难度:中等 | |
学校为了解全校1600名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项.且不能不选.将调查得到的结果绘制成如图所示的频数分布直方图和扇形统计图(均不完整). (1)问:在这次调查中,一共抽取了多少名学生? (2)补全频数分布直方图; (3)估计全校所有学生中有多少人乘坐公交车上学? |
24. 难度:中等 | |
如图所示,甲乙两人准备了可以自由转动的转盘A、B,每个转盘被分成几个面积相等的扇形,并在每个扇形内标上数字. (1)只转动A转盘,指针所指的数字是2的概率是多少? (2)如果同时转动A、B两个转盘,将指针所指的数字相加,则和是非负数的概率是多少?并用树状图或表格说明理由.(如果指针指在分割线上,那么重转一次,直到指针指向某一区域为止). |
25. 难度:中等 | |
某住宅小区计划购买并种植甲、乙两种树苗共300株.已知甲种树苗每株60元,乙种树苗每株90元. (1)若购买树苗共用21000元,问甲、乙两种树苗应各买多少株? (2)据统计,甲、乙两种树苗每株树苗对空气的净化指数分别为0.2和0.6,问如何购买甲、乙两种树苗才能保证该小区的空气净化指数之和不低于90而且费用最低? |
26. 难度:中等 | |
(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN. 下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明. 证明:在边AB上截取AE=MC,连接ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.∴∠NMC=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠MAB=∠MAE. (下面请你完成余下的证明过程) (2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则∠AMN=60°时,结论AM=MN是否还成立?请说明理由. (3)若将(1)中的“正方形ABCD”改为“正n边形ABCD…X,请你作出猜想:当∠AMN=______时,结论AM=MN仍然成立.(直接写出答案,不需要证明) |
27. 难度:中等 | |
在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4), C(2,0)三点. (1)求抛物线的解析式; (2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S. 求S关于m的函数关系式,并求出S的最大值. (3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标. |