1. 难度:中等 | |
-5的相反数是( ) A.5 B. C.-5 D. |
2. 难度:中等 | |
保护水资源,人人有责,我国是缺水国家,目前可利用淡水资源总量仅约为899000亿立方米,899000亿用科学记数法表示为( ) A.8.99×1013 B.0.899×1014 C.8.99×1012 D.89.9×1011 |
3. 难度:中等 | |
在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( ) A. B. C. D. |
4. 难度:中等 | |
将一张等边三角形纸片按图①所示的方式对折,再按图②所示的虚线剪去一个小三角形,将余下纸片展开得到的图案是( ) A. B. C. D. |
5. 难度:中等 | |
如图所示的几何体的俯视图是( ) A. B. C. D. |
6. 难度:中等 | |
如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于( ) A.20° B.30° C.40° D.50° |
7. 难度:中等 | |
已知圆锥的底面半径为3,母线长为5,则此圆锥的表面积为( ) A.15π B.24π C.34π D.75π |
8. 难度:中等 | |
若x1,x2是一元二次方程x2-5x+6=0的两个根,则x1+x2的值是( ) A.1 B.5 C.-5 D.6 |
9. 难度:中等 | |
如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为1,则第n个矩形的面积为( ) A. B. C. D. |
10. 难度:中等 | |
如图,点A是5×5网格图形中的一个格点(小正方形的顶点),图中每个小正方形的边长为1,以A为其中的一个顶点,面积等于的格点等腰直角三角形(三角形的三个顶点都是格点)的个数是( ) A.10个 B.12个 C.14个 D.16个 |
11. 难度:中等 | |
因式分【解析】 xy2-4x= . |
12. 难度:中等 | |
计算:2x3•x2= . |
13. 难度:中等 | |
要使分式 有意义,那么x应满足的条件是 . |
14. 难度:中等 | |
某校举行物理实验操作测试,共准备了三项不同的实验,要求每位学生只参加其中的一项实验,由学生自己抽签确定做哪项实验.在这次测试中,小亮和大刚恰好做同一项实验的概率是 . |
15. 难度:中等 | |
若⊙O1和⊙O2外切,O1O2=10cm,⊙O1半径为3cm,则⊙O2半径为 cm. |
16. 难度:中等 | |
已知,如图,正方形ABCD的边长是8,M在DC上,且DM=2,N是AC边上的一动点,则DN+MN的最小值是 . |
17. 难度:中等 | |
解不等式组. |
18. 难度:中等 | |
如图,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A=37°,求∠D的度数. |
19. 难度:中等 | |
为了了解我县初中学生体育活动情况,随机调查了720名八年级学生,调查内容是:“每天锻炼是否超过1小时及未超过1小时的原因”,利用所得的数据制成了扇形统计图和频数分布直方图.根据图示,解答下列问题: (1)若在被调查的学生中随机选出一名学生测试其体育成绩,选出的是“每天锻炼超过1小时”的学生的概率是多少? (2)“没时间”锻炼的人数是多少?并补全频数分布直方图; (3)2012年我县八年级学生约为1.2万人,按此调查,可以估计2012年我县八年级学生中每天锻炼未超过1小时的学生约有多少万人? |
20. 难度:中等 | |
某电视台组织的一个知识竞赛栏目中,预赛有16道题,预赛的规则是:答对一题得6分,不答或答错一题扣2分,得分超过60分的可以进入决赛,那么选手要想进入决赛至少应答对多少道题? |
21. 难度:中等 | |
如图,某建筑物BC上有一旗杆AB,小明在与BC相距12m的F处,由E点观测到旗杆顶部A的仰角为52°、底部B的仰角为45°,小明的观测点与地面的距离EF为1.6m. (1)求建筑物BC的高度; (2)求旗杆AB的高度. (结果精确到0.1m.参考数据:≈1.41,sin52°≈0.79,tan52°≈1.28) |
22. 难度:中等 | |
如图,抛物线y=ax2-5x+4a与x轴相交于点A、B,且过点C(5,4). (1)求点A和点B的坐标; (2)求a的值和该抛物线顶点P的坐标; (3)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的解析式. |
23. 难度:中等 | |
如图,直线y=k1x+b与反比例函数(x>0)的图象交于A(1,6),B(a,3)两点. (1)求k1、k2的值. (2)直接写出时x的取值范围; (3)如图,等腰梯形OBCD中,BC∥OD,OB=CD,OD边在x轴上,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为12时,请判断PC和PE的大小关系,并说明理由. |
24. 难度:中等 | |
如图1,在边长为5的正方形ABCD中,点E、F分别是BC、DC边上的点,且AE⊥EF,BE=2. (1)求EC:CF的值; (2)延长EF交正方形外角平分线CP于点P(如图2),试判断AE与EP的大小关系,并说明理由; (3)在图2的AB边上是否存在一点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由. |
25. 难度:中等 | |
已知:如图,⊙A与y轴交于C、D两点,圆心A的坐标为(1,0),⊙A的半径为,过点C作⊙A的切线交x轴于点B(-4,0). (1)求切线BC的解析式; (2)若点P是第一象限内⊙A上的一点,过点P作⊙A的切线与直线BC相交于点G,且∠CGP=120°,求点G的坐标; (3)向左移动⊙A(圆心A始终保持在x轴上),与直线BC交于E、F,在移动过程中是否存在点A,使△AEF是直角三角形?若存在,求出点A的坐标;若不存在,请说明理由. |