1. 难度:中等 | |
2011的相反数是( ) A.-2011 B.2011 C. D.±2011 |
2. 难度:中等 | |
海南省2010年第六次人口普查数据显示,2010年11月1日零时.全省总人口为8671518人.数据8671518用科学记数法(保留三个有效数字)表示应是( ) A.8.7×106 B.8.7×107 C.8.67×106 D.8.67×107 |
3. 难度:中等 | |
如图是五个相同的小正方体搭成的几何体,这几个几何体的主视图是( ) A. B. C. D. |
4. 难度:中等 | |
五边形的外角和等于( ) A.180° B.360° C.540° D.720° |
5. 难度:中等 | |
某工厂今年元月份的产量是50万元,3月份的产值达到了72万元.若求2、3月份的产值平均增长率,设这两个月的产值平均月增长率为x,依题意可列方程( ) A.72(x+1)2=50 B.50(x+1)2=72 C.50(x-1)2=72 D.72(x-1)2=50 |
6. 难度:中等 | |
两条直线y=k1x+b1和y=k2x+b2相交于点A(-2,3),则方程组的解是( ) A. B. C. D. |
7. 难度:中等 | |
甲,乙,丙,丁四位同学在四次数学测验中,他们成绩的平均数相同,方差分别为S甲2=5.5,S乙2=7.3,S丙2=8.6,S丁2=4.5,则成绩最稳定的是( ) A.甲同学 B.乙同学 C.丙同学 D.丁同学 |
8. 难度:中等 | |
如图,将平行四边形ABCD折叠,使顶点D恰落在AB边上的点M处,折痕为AN,那么对于结论 ①MN∥BC,②MN=AM,下列说法正确的是( ) A.①②都对 B.①②都错 C.①对②错 D.①错②对 |
9. 难度:中等 | |
如图,正方形ABCD的边长是3cm,一个边长为1cm的小正方形沿着正方形ABCD的边AB→BC→CD→DA→AB连续地翻转,那么这个小正方形第一次回到起始位置时,它的方向是( ) A. B. C. D. |
10. 难度:中等 | |
如图,在直角三角形ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,则x的值为( ) A.5 B.6 C.7 D.12 |
11. 难度:中等 | |
二次函数y=ax2+bx+c的图象如图所示,则反比例函数与一次函数y=bx+c在同一坐标系中的大致图象是( ) A. B. C. D. |
12. 难度:中等 | |
如图,O为原点,点A的坐标为(3,0),点B的坐标为(0,4),⊙D过A、B、O三点,点C为上一点(不与O、A两点重合),则cosC的值为( ) A. B. C. D. |
13. 难度:中等 | |
分解因式:4a3-a= . |
14. 难度:中等 | |
如图,以O为位似中心,把五边形ABCDE的面积扩大为原来的4倍,得五边形A1B1C1D1E1,则OD:OD1= . |
15. 难度:中等 | |
我市某中学组织学生进行“低碳生活”知识竞赛,为了了解本次竞赛的成绩,把学生成绩分成A、B、C、D、E五个等级,并绘制如图的统计图(不完整)统计成绩.若扇形的半径为2cm,则C等级所在的扇形的面积是 cm2. |
16. 难度:中等 | |
在平面直角坐标系中,若点M(1,3)与点N(x,3)之间的距离是5,则x的值是 . |
17. 难度:中等 | |
计算:2011+()-1+4sin45°-|-| |
18. 难度:中等 | |
解不等式组:,并把解集在数轴上表示出来. |
19. 难度:中等 | |
在平面直角坐标系中,△ABC的位置如图所示,请解答下列问题: (1)将△ABC向下平移3个单位长度,得到△A1B1C1,画出平移后的△A1B1C1; (2)将△ABC绕点O顺时针方向旋转180°,得到△A2B2C2,画出旋转后的△A2B2C2,并写出A2点的坐标. |
20. 难度:中等 | |
如图,在昆明市轨道交通的修建中,规划在A、B两地修建一段地铁,点B在点A的正东方向,由于A、B之间建筑物较多,无法直接测量,现测得古树C在点A的北偏东45°方向上,在点B的北偏西60°方向上,BC=400m,请你求出这段地铁AB的长度.(结果精确到1m,参考数据:,≈1.732) |
21. 难度:中等 | |
已知:如图,在梯形ABCD中,AD∥BC,AB=DC,点E、F分别在AB、DC上,且BE=2EA,CF=2FD.求证:∠BEC=∠CFB. |
22. 难度:中等 | |
某班毕业晚会设计了即兴表演节目的摸球游戏,在一个不透明的盒子里装有4个分别标有数字1、2、3、4的乒乓球,这些球除数字外,其它完全相同.晚会上每位同学必须且只能做一次摸球游戏.游戏规则是:从盒子里随机摸出一个球,放回搅匀后,再摸出一个球,若第二次摸出的球上的数字小于第一次摸出的球上的数字,就要给大家即兴表演一个节目. (1)参加晚会的同学性别比例如图,女生有18人,则参加晚会的学生共有______人; (2)用列表法或树形图法求出晚会的某位同学即兴表演节目的概率; (3)估计本次晚会上有多少名同学即兴表演节目? |
23. 难度:中等 | |
大众服装店今年4月用4000元购进了一款衬衣若干件,上市后很快售完,服装店于5月初又购进同样数量的该款衬衣,由于第二批衬衣进货时价格比第一批衬衣进货时价格提高了20元,结果第二批衬衣进货用了5000元. (1)第一批衬衣进货时的价格是多少? (2)第一批衬衣售价为120元/件,为保证第二批衬衣的利润率不低于第一批衬衣的利润率,那么第二批衬衣每件售价至少是多少元? (提示:利润=售价-成本,利润率=) |
24. 难度:中等 | |
在同一直角坐标系中反比例函数的图象与一次函数y=kx+b的图象相交,且其中一个交点A的坐标为(-2,3),若一次函数的图象又与x轴相交于点B,且△AOB的面积为6(点O为坐标原点).求一次函数与反比例函数的解析式. |
25. 难度:中等 | |
如图,点A、B在⊙O上,直线AC是⊙O的切线,OD⊥OB,连接AB交OC于点D. (1)求证:AC=CD; (2)若AC=2,AO=,求OD的长度. |
26. 难度:中等 | |
已知:如图,在△ABC中,D为AB边上一点,∠A=36°,AC=BC,AC2=AD•AB. (1)试说明:△ADC和△BDC都是等腰三角形; (2)若AB=1,求AC的值. |
27. 难度:中等 | |
如图,已知抛物线y=-x2+bx+c与坐标轴交于A,B,C三点,点A的横坐标为-1,过点C(0,3)的直线y=-x+3与x轴交于点Q,点P是线段BC上的一个动点,PH⊥OB于点H.若PB=5t,且0<t<1. (1)确定b,c的值; (2)写出点B,Q,P的坐标(其中Q,P用含t的式子表示); (3)依点P的变化,是否存在t的值,使△PQB为等腰三角形?若存在,求出所有t的值;若不存在,说明理由. |
28. 难度:中等 | |
已知:如图,△ABC中,∠C=90°,AC=3厘米,CB=4厘米.两个动点P、Q分别从A、C两点同时按顺时针方向沿△ABC的边运动.当点Q运动到点A时,P、Q两点运动即停止.点P、Q的运动速度分别为1厘米/秒、2厘米/秒,设点P运动时间为t(秒). (1)当时间t为何值时,以P、C、Q三点为顶点的三角形的面积(图中的阴影部分)等于2厘米2; (2)当点P、Q运动时,阴影部分的形状随之变化.设PQ与△ABC围成阴影部分面积为S(厘米2),求出S与时间t的函数关系式,并指出自变量t的取值范围; (3)点P、Q在运动的过程中,阴影部分面积S有最大值吗?若有,请求出最大值;若没有,请说明理由. |