1. 难度:中等 | |
点P在第三象限内,P到X轴的距离与到y轴的距离之比为2:1,到原点的距离为,则点P的坐标 ( ) A.(-1,2) B.(-2,-1) C.(-1,-2) D.(1,-2) |
2. 难度:中等 | |
如图,在菱形ABCD中,DE⊥AB,,BE=2,则tan∠DBE的值( ) A. B.2 C. D. |
3. 难度:中等 | |
如图,⊙O的内接多边形周长为3,⊙O的外切多边形周长为3.4,则下列各数中与此圆的周长最接近的是( ) A. B. C. D. |
4. 难度:中等 | |
如图,正方形ABCD内有两条相交线段MN、EF,M、N、E、F分别在边AB、CD、AD、BC上.甲同学认为:若MN=EF,则MN⊥EF;乙同学认为:若MN⊥EF,则MN=EF.你认为( ) A.两人都不对 B.两人都对 C.仅甲对 D.仅乙对 |
5. 难度:中等 | |
下列六个结论: ①垂直于弦的直径平分这条弦; ②有理数和数轴上的点一一对应; ③三角形的内切圆和外接圆是同心圆; ④相等圆心角所对的弦相等. ⑤圆心到直线上一点的距离恰好等于圆的半径,则该直线是圆的切线; ⑥一个圆锥的侧面积是一个面积为4π平方厘米的扇形,那么这个圆锥的母线长L和底面半径R之间的函数关系是正比例函数. 其中正确的结论的个数是( ) A.0个 B.1个 C.2个 D.3个 |
6. 难度:中等 | |
在古代生活中,很多时候也要用到不少数学知识,比如有这样一道题:隔墙听得客分银,不知人数不知银;七两分之多四两,九两分之少半斤.请同学们想想有几人,几两银?(注:古秤十六两为一斤)( ) A.六人,四十六两银 B.五人,三十九两银 C.六人,四十四两银 D.五人,三十七两银 |
7. 难度:中等 | |
如图,E、F、G、H分别是BD、BC、AC、AD的中点,且AB=CD.下列结论:①EG⊥FH,②四边形EFGH是矩形,③HF平分∠EHG,④EG=(BC-AD),⑤四边形EFGH是菱形.其中正确的个数是( ) A.1 B.2 C.3 D.4 |
8. 难度:中等 | |
如图,在正方形纸片ABCD中,E,F分别是AD,BC的中点,沿过点B的直线折叠,使点C落在EF上,落点为N,折痕交CD边于点M,BM与EF交于点P,再展开.则下列结论中:①CM=DM;②∠ABN=30°;③AB2=3CM2;④△PMN是等边三角形.正确的有( ) A.1个 B.2个 C.3个 D.4个 |
9. 难度:中等 | |
如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为( ) A.130° B.120° C.110° D.100° |
10. 难度:中等 | |
如图为菱形ABCD与正方形EFGH的重迭情形,其中E在CD上,AD与GH相交于I点,且AD∥HE.若∠A=60°,且AB=7,DE=4,HE=5,则梯形HEDI的面积为何?( ) A.6 B.8 C.10-2 D.10+2 |
11. 难度:中等 | |
二次函数y=ax2+bx+c的图象如图所示,Q(n,2)是图象上的一点,且AQ⊥BQ,则a的值为( ) A.- B.- C.-1 D.-2 |
12. 难度:中等 | |
(课改)现有A、B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A立方体朝上的数字为x小明掷B立方体朝上的数字为y来确定点P(x,y),那么它们各掷一次所确定的点P落在已知抛物线y=-x2+4x上的概率为( ) A. B. C. D. |
13. 难度:中等 | |
矩形ABCD中,AD=8cm,AB=6cm.动点E从点C开始沿边CB向点B以2cm/s的速度运动,动点F从点C同时出发沿边CD向点D以1cm/s的速度运动至点D停止.如图可得到矩形CFHE,设运动时间为x(单位:s),此时矩形ABCD去掉矩形CFHE后剩余部分的面积为y(单位:cm2),则y与x之间的函数关系用图象表示大致是下图中的( ) A. B. C. D. |
14. 难度:中等 | |
在△ABC中,若||=0,且∠B,∠C都是锐角,则∠A的度数是( ) A.15° B.60° C.75° D.30° |
15. 难度:中等 | |
下列图形中阴影部分的面积相等的是( ) A.①和② B.②和④ C.③和④ D.①和④ |
16. 难度:中等 | |
如图,在△ABC中,∠C=90°,点E在边BC上,把△ACE沿AE翻折,点C恰好与AB上的点D重合,若AC=BC=8,则△EBD的周长为( ) A.8 B. C. D. |
17. 难度:中等 | |
如图,钝角等腰三角形AOB,EFG的顶点O,B,E在x轴上,A,F在函数图象上,且AE垂直x轴于点E,∠ABO=∠FGE=120°,则F点的坐标为( ) A. B. C. D. |
18. 难度:中等 | |
已知整数x满足-5≤x≤5,y1=2x+1,y2=-x+4对任意一个x,m都取y1,y2中的较小值,则m的最大值是( ) A.1 B.3 C.9 D.11 |
19. 难度:中等 | |
如图,E、F分别是正方形ABCD的边BC、CD上的点,BE=CF,连接AE、BF.将△ABE绕正方形的中心按逆时针方向旋转到△BCF,旋转角为α( 0°<α<180°),则∠α= . |
20. 难度:中等 | |
如图,在由12个边长都为1且有一个锐角为60°的小菱形组成的网格中,点P是其中的一个顶点,以点P为直角顶点作格点直角三角形(即顶点均在格点上的三角形),请你写出所有可能的直角三角形斜边的长 . |
21. 难度:中等 | |
如图所示,两个全等菱形的边长为1厘米,一只蚂蚁由A点开始按ABCDEFCGA的顺序沿菱形的边循环运动,行走2008厘米后停下,则这只蚂蚁停在 点. |
22. 难度:中等 | |
已知菱形ABCD的边长是8,点E在直线AD上,若DE=3,连接BE与对角线AC相交于点M,则的值是 . |
23. 难度:中等 | |
小燕抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为 . |
24. 难度:中等 | |
如图,正三角形ABC内接于圆O,AD⊥BC于点D交圆于点E,动点P在优弧BAC上,且不与点B,点C重合,则∠BPE等于 . |
25. 难度:中等 | |
如图,⊙O2与半圆Ol内切于点C,与半圆的直径AB切于点D,若AB=6,⊙O2的半径为1,则∠ABC的度数为 度. |
26. 难度:中等 | |
如图,PA、PB、CD分别切⊙O于A、B、E,CD交PA、PB于C、D两点,若∠P=68°,则∠PAE+∠PBE的度数为 . |
27. 难度:中等 | |
如图,过D、A、C三点的圆的圆心为E,过B、E、F三点的圆的圆心为D,如果∠A=63°,那么∠B= . |
28. 难度:中等 | |
已知如图,平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点C,点D的坐标分别为(0,4),(5,0),,点P在BC边上运动(不与B,C重合),当△ODP是腰长为5的等腰三角形时,点P的坐标为: . |
29. 难度:中等 | |
如图,Rt△AOB中,O为坐标原点,∠AOB=90°,∠B=30°,如果点A在反比例函数y=(x>0)的图象上运动,那么点B在函数 (填函数解析式)的图象上运动. |
30. 难度:中等 | |
已知A,B,C是反比例函数y=(x>0)图象上的三个整点(即横、纵坐标均为整数的点),分别以这些点向横轴或纵轴作垂线段,由垂线段为边作出三个正方形,再以正方形的边长为直径作两个半圆,组成如图所示的阴影部分,则阴影部分的面积总和是 .(用含π的代数式表示) |
31. 难度:中等 | |
生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润y和月份n之间函数关系式为y=-n2+14n-24,则该企业一年中应停产的月份是 . |
32. 难度:中等 | |
在平面直角坐标系xOy中,正方形A1B1C1O、A2B2C2B1、A3B3C3B2,…,按如图所示的方式放置、点A1、A2、A3,…和点B1、B2、B3,…分别在直线y=kx+b和x轴上、已知C1(1,-1),C2(,),则点A3的坐标是 ;点An的坐标是 . |
33. 难度:中等 | |
已知,⊙0的直径AB=,点C是⊙0上一点,且BC=1,点D是的中点,则CD= . |
34. 难度:中等 | |
观察下列图形: 它们是按照一定规律排列的,依照此规律,第5个图形中共有 个. |
35. 难度:中等 | |
如图,正方形ABCD,矩形EFGH均位于第一象限内,它们的边平行于x轴或y轴,其中,点A,E在直线OM上,点C,G在直线ON上,O为坐标原点,点A的坐标为(3,3),正方形ABCD的边长为1. (1)直线ON的解析式是 ; (2)若矩形EFGH的周长为10,面积为6,则点F的坐标为 . |
36. 难度:中等 | |
如图,△ABC内接于⊙O,∠A所对弧的度数为120度.∠ABC、∠ACB的角平分线分别交于AC、AB于点D、E,CE、BD相交于点F.以下四个结论:①cos∠BFE=;②BC=BD;③EF=FD;④BF=2DF.其中结论一定正确的序号数是 . |
37. 难度:中等 | |
如图,点A(a,b)在双曲线上,AB⊥x轴于点B,若点是双曲线上异于点A的另一点. (1)k= ; (2)若a2=169-b2,则△OAB的内切圆半径r= . |
38. 难度:中等 | |
先化简,再求值:•,其中x=-6. |
39. 难度:中等 | |
解不等式组:,并把它的解集在数轴上表示出来. |
40. 难度:中等 | |
如图,已知正方形ABCD的边长为8,以AB为直径的⊙O交对角线AC于点F,点E在⊙O上(E,F分别在直径AB的两侧). (1)求∠AEF的度数; (2)若AE=7,求∠AFE的正弦值; (3)求图中阴影部分的面积. |
41. 难度:中等 | |
如图,在Rt△ABC中,斜边BC=12,∠C=30°,D为BC的中点,△ABD的外接圆⊙O与AC交于F点,过A作⊙O的切线AE交DF的延长线于E点. (1)求证:AE⊥DE; (2)计算:AC•AF的值. |
42. 难度:中等 | |
如图,AB是⊙O的直径,AD是弦,过圆上的点D作直线CD,且∠CDA=∠B. (1)求证:CD是⊙O的切线; (2)作AT⊥CD于点T,若AB=5AT,求sinB的值. |
43. 难度:中等 | |
如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B、M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径. (1)判断AE与⊙O的位置关系,并说明理由; (2)当BC=4,AC=3CE时,求⊙O的半径. |
44. 难度:中等 | |
已知关于x的方程 mx2+(3m+1)x+3=0. (1)求证:不论m为任何实数,此方程总有实数根; (2)若抛物线y=mx2+(3m+1)x+3与x轴交于两个不同的整数点,且m为正整数,试确定此抛物线的解析式; (3)若点P(x1,y1)与Q(x1+n,y2)在(2)中抛物线上 (点P、Q不重合),且y1=y2,求代数式的值. |
45. 难度:中等 | |
如图,在梯形ABCD中,AB∥CD,∠BCD=90°,且AB=1,BC=2,tan∠ADC=2. (1)求证:DC=BC; (2)E是梯形内一点,F是梯形外一点,且∠EDC=∠FBC,DE=BF,试判断△ECF的形状,并证明你的结论; (3)在(2)的条件下,当BE:CE=1:2,∠BEC=135°时,求sin∠BFE的值. |
46. 难度:中等 | |
如图,在矩形ABCD中,AB=3,BC=4,动点P从点D出发沿DA向终点A运动,同时动点Q从点A出发沿对角线AC向终点C运动.过点P作PE∥DC,交AC于点E,动点P、Q的运动速度是每秒1个单位长度,运动时间为x秒,当点P运动到点A时,P、Q两点同时停止运动.设PE=y; (1)求y关于x的函数关系式; (2)探究:当x为何值时,四边形PQBE为梯形? (3)是否存在这样的点P和点Q,使P、Q、E为顶点的三角形是等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由. |
47. 难度:中等 | |
如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6.沿斜边AB的中线CD把这张纸片剪成△AC1D1和△BC2D2两个三角形(如图所示).将纸片△AC1D1沿直线D2B(AB)方向平移(点A,D1,D2,B始终在同一直线上),当点D1于点B重合时,停止平移.在平移过程中,C1D1与BC2交于点E,AC1与C2D2、BC2分别交于点F、P. (1)当△AC1D1平移到如图3所示的位置时,猜想图中的D1E与D2F的数量关系,并证明你的猜想; (2)设平移距离D2D1为x,△AC1D1与△BC2D2重叠部分面积为y,请写出y与x的函数关系式,以及自变量的取值范围; (3)对于(2)中的结论是否存在这样的x的值使得y=S△ABC;若不存在,请说明理由. |
48. 难度:中等 | |
如图,矩形OABC的边OC,OA分别与x轴,y轴重合,点B的坐标是(,1),点D是AB边上一个动点(与点A不重合),沿OD将△OAD翻折,点A落在点P处. (1)若点P在一次函数y=2x-1的图象上,求点P的坐标; (2)若点P在抛物线y=ax2图象上,并满足△PCB是等腰三角形,求该抛物线解析式; (3)当线段OD与PC所在直线垂直时,在PC所在直线上作出一点M,使DM+BM最小,并求出这个最小值. |
49. 难度:中等 | |
已知直线y=kx-6(k>0)分别交x轴、y轴于A、B两点,线段OA上有一动点P由原点O向点A运动,速度为每秒1个单位长度,过点P作x轴的垂线交直线AB于点C,设运动时间为t秒. (1)填空:点P的坐标为(______,______); (2)当k=1时,线段OA上另有一动点Q由点A向点O运动,它与点P以相同速度同时出发,当点P到达点A时两点同时停止运动,如图①.作BF⊥PC于点F,若以B、F、Q、P为顶点的四边形是平行四边形,求t的值. (3)当k=时,设以C为顶点的抛物线y=(x+m)2+n与直线AB的另一交点为D(如图②),设△COD的OC边上的高为h,问:是否存在某个时刻t,使得h有最大值?若存在,试求出t的值;若不存在,请说明理由. |