1. 难度:中等 | |
-的绝对值是( ) A.- B. C.- D. |
2. 难度:中等 | |
下列各式中,正确的是( ) A. B. C. D. |
3. 难度:中等 | |
下列汽车标志中,可以看作是中心对称图形的是( ) A. B. C. D. |
4. 难度:中等 | |
一元二次方程x(x-2)=0根的情况是( ) A.有两个不相等的实数根 B.有两个相等的实数根 C.只有一个实数根 D.没有实数根 |
5. 难度:中等 | |
一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的概率为( ) A. B. C. D. |
6. 难度:中等 | |
已知▱ABCD的周长为32,AB=4,则BC=( ) A.4 B.12 C.24 D.28 |
7. 难度:中等 | |
如图.在梯形ABCD中,AB∥DC,AD=DC=CB,若∠ABD=25°,则∠BAD的大小是( ) A.40° B.45° C.50° D.60° |
8. 难度:中等 | |
在平面直角坐标系xOy中,以点(-3,4)为圆心,4为半径的圆( ) A.与x轴相交,与y轴相切 B.与x轴相离,与y轴相交 C.与x轴相切,与y轴相交 D.与x轴相切,与y轴相离 |
9. 难度:中等 | |
如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长为半径画弧,分别交直线l1、l2于B、C两点,连接AC、BC.若∠ABC=54°,则∠1的大小为( ) A.36° B.54° C.72° D.73° |
10. 难度:中等 | |
如图,函数y1=x-1和函数的图象相交于点M(2,m),N(-1,n),若y1>y2,则x的取值范围是( ) A.x<-1或0<x<2 B.x<-1或x>2 C.-1<x<0或0<x<2 D.-1<x<0或x>2 |
11. 难度:中等 | |
如图所示,将矩形纸片先沿虚线AB按箭头方向向右对折,接着对折后的纸片沿虚线CD向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是( ) A. B. C. D. |
12. 难度:中等 | |
如图是一个正六棱柱的主视图和左视图,则图中的a=( ) A. B. C.2 D.1 |
13. 难度:中等 | |
某次数学测验中,五位同学的分数分别是:89,91,105,105,110.这组数据的中位数是 ,众数是 ,平均数是 . |
14. 难度:中等 | |
化简的结果是 . |
15. 难度:中等 | |
分解因式:3m(2x-y)2-3mn2= . |
16. 难度:中等 | |
如图,海边立有两座灯塔A、B,暗礁分布在经过A、B两点的弓形(弓形的弧是⊙O的一部分)区域内,∠AOB=80°.为了避免触礁,轮船P与A、B的张角∠APB的最大值为 . |
17. 难度:中等 | |
如图,△ABC中,DE∥BC,DE分别交边AB、AC于D、E两点,若AD:AB=1:3,则△ADE与四边形DBCE的面积比为 . |
18. 难度:中等 | |
如图所示,两块完全相同的含30°角的直角三角板叠放在一起,且∠DAB=30°.有以下四个结论:①AF丄BC;②△ADG≌△ACF;③O为BC的中点;④AG:DE=:4,其中正确结论的序号是 .(错填得0分,少填酌情给分). |
19. 难度:中等 | |
解不等式组,并写出不等式组的整数解. |
20. 难度:中等 | |
计算:(4ab3-8a2b2)÷4ab+(2a+b)(2a-b) |
21. 难度:中等 | |
如图,点A、B、C、D在同一条直线上,BE∥DF,∠A=∠F,AB=FD.求证:AE=FC. |
22. 难度:中等 | |
图①表示的是某综合商场今年1~5月的商品各月销售总额的情况,图②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察图①、图②,解答下列问题: (1)来自商场财务部的数据报告表明,商场1~5月的商品销售总额一共是410万元,请你根据这一信息将图①中的统计图补充完整; (2)商场服装部5月份的销售额是多少万元? (3)小刚观察图②后认为,5月份商场服装部的销售额比4月份减少了.你同意他的看法吗?请说明理由. |
23. 难度:中等 | |
小刘同学在课外活动中观察吊车的工作过程,绘制了如图所示的平面图形.已知吊车吊臂的支点O距离地面的高OO′=2米.当吊臂顶端由A点抬升至A′点(吊臂长度不变)时,地面B处的重物(大小忽略不计)被吊至B′处,紧绷着的吊缆A′B′=AB.AB垂直地面O′B于点B,A′B′垂直地面O′B于点C,吊臂长度OA′=OA=10米,且cosA=,sinA′=. (1)求此重物在水平方向移动的距离BC; (2)求此重物在竖直方向移动的距离B′C.(结果保留根号) |
24. 难度:中等 | |||||||||||||
已知A、B两地的路程为240千米.某经销商每天都要用汽车或火车将x吨保鲜品一次 性由A地运往B地.受各种因素限制,下一周只能采用汽车和火车中的一种进行运输,且须提前预订. 现有货运收费项目及收费标准表、行驶路程s(千米)与行驶时间t(时)的函数图象(如图1)、上周货运量折线统计图(如图2)等信息如下: 货运收费项目及收费标准表
(2)设每天用汽车和火车运输的总费用分别为y汽(元)和y火(元),分别求y汽、y火与 x的函数关系式(不必写出x的取值范围),及x为何值时y汽>y火 (总费用=运输费+冷藏费+固定费用) (3)请你从平均数、折线图走势两个角度分析,建议该经销商应提前为下周预定哪种运输工具,才能使每天的运输总费用较省? |
25. 难度:中等 | |
如图,已知CD是⊙O的直径,AC⊥CD,垂足为C,弦DE∥OA,直线AE,CD相交于点B. (1)求证:直线AB是⊙O的切线; (2)如果AC=1,BE=2,求的值. |
26. 难度:中等 | |
如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A,B两点,交y轴于点D,其中点B的坐标为(3,0) (1)求抛物线的解析式; (2)如图2,设E是抛物线上在第一象限内的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长; (3)如图3,在抛物线上是否存在一点T,过点T作x轴的垂线,垂足为点M,过点M作MN∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD?若存在,求出点T的坐标;若不存在,请说明理由. |