1. 难度:中等 | |
温家宝总理在十一届全国人大五次会议上的政府工作报告中指出,2011年共有1228万名中西部家庭经济困难学生享受生活补助.1228万可用科学记数法表示为( ) A.1.228×107 B.12.28×106 C.122.8×105 D.1228×104 |
2. 难度:中等 | |
下列计算正确的是( ) A.(-a3)2=-a6 B.(a-b)2=a2-b2 C.3a2+2a3=5a5 D.a6÷a3=a3 |
3. 难度:中等 | |
两圆的半径分别为3和7,圆心距为7,则两圆的位置关系是( ) A.内切 B.相交 C.外切 D.外离 |
4. 难度:中等 | |
下列说法不正确的是( ) A.某种彩票中奖的概率是,买1000张该种彩票一定会中奖 B.了解一批电视机的使用寿命适合用抽样调查 C.若甲组数据的标准差S甲=0.31,乙组数据的标准差S乙=0.25,则乙组数据比甲组数据稳定 D.在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件 |
5. 难度:中等 | |
下列命题中,真命题是( ) A.一组对边平行且有一组邻边相等的四边形是平行四边形 B.顺次连接四边形各边中点所得到的四边形是矩形 C.等边三角形既是轴对称图形又是中心对称图形 D.对角线互相垂直平分的四边形是菱形 |
6. 难度:中等 | |
如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是( ) A.①② B.②③ C.②④ D.③④ |
7. 难度:中等 | |
如图,巳知A点坐标为(5,0),直线y=x+b(b>0)与y轴交于点B,连接AB,∠α=75°,则b的值为( ) A.3 B. C.4 D. |
8. 难度:中等 | |
如图,已知梯形ABCO的底边AO在x轴上,BC∥AO,AB⊥AO,过点C的双曲线交OB于D,且OD:DB=1:2,若△OBC的面积等于3,则k的值( ) A.等于2 B.等于 C.等于 D.无法确定 |
9. 难度:中等 | |
(1)与-3互为相反数的是 , (2)16的平方根是 . (3)当x 时,根式有意义; (4)当x 时,分式的值为零. |
10. 难度:中等 | |
分解因式:2x2-4xy+2y2= . |
11. 难度:中等 | |
已知扇形的半径为6cm,弧长为4πcm,则扇形面积为 cm2,扇形的圆心角为 . |
12. 难度:中等 | |||||||||||
数学老师布置10道选择题作业,批阅后得到如下统计表.根据表中数据可知,这45名同学答对题数组成的样本的中位数是 题.
|
13. 难度:中等 | |
如图,在矩形纸片ABCD中,AB=2cm,点E在BC上,且AE=CE.若将纸片沿AE折叠,点B恰好与AC上的点B1重合,则AC= cm. |
14. 难度:中等 | |
如图所示,AB为⊙O的直径,P点为其半圆上一点,∠POA=40°,C为另一半圆上任意一点(不含A、B),则∠PCB= 度. |
15. 难度:中等 | |
如图,梯形ABCD中,AD∥BC,EF是梯形的中位线,对角线AC交EF于G,若BC=10cm,EF=8cm,则GF的长等于 cm. |
16. 难度:中等 | |
腰长为5,一条高为4的等腰三角形的底边长为 . |
17. 难度:中等 | |
如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2012次运动后,动点P的坐标是 . |
18. 难度:中等 | |
计算或化简: (1)-2sin45°+(2-π)-()-1 (2)÷(1-). |
19. 难度:中等 | |
解不等式组或方程 (1)解不等式组,并求出此不等式组的整数解; (2)解方程:x2+4x-2=0. |
20. 难度:中等 | |
已知:如图,▱ABCD中,∠ABC的平分线交AD于E,∠CDA的平分线交BC于F. (1)求证:△ABE≌△CDF; (2)连接EF、BD,求证:EF与BD互相平分. |
21. 难度:中等 | |
已知:如图,在直角梯形ABCD中,AD∥BC,AB⊥AD,BC=CD,BE⊥CD,垂足为点E,点F在BD上,连接AF、EF. (1)求证:AD=ED; (2)如果AF∥CD,求证:四边形ADEF是菱形. |
22. 难度:中等 | |
某中学学生为了解该校学生喜欢球类活动的情况,随机抽取了若干名学生进行问卷调查(要求每位学生只能填写一种自己喜欢的球类),并将调查的结果绘制成如下的两幅不完整的统计图. 请根据图中提供的信息,解答下面的问题: (1)参加调查的学生共有______人,在扇形图中,表示“其他球类”的扇形的圆心角为______度; (2)将条形图补充完整; (3)若该校有2000名学生,则估计喜欢“篮球”的学生共有______人. |
23. 难度:中等 | |
甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛. (1)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率. (2)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率. |
24. 难度:中等 | |
如图,正方形网格中的每一个小正方形的边长都是1,四边形ABCD的四个顶点都在格点上,O为AD边的中点,若把四边形ABCD绕着点O顺时针旋转180°,试解决下列问题: (1)画出四边形ABCD旋转后的图形; (2)求点C旋转过程所经过的路径长; (3)设点B旋转后的对应点为B′,求tan∠DAB′的值. |
25. 难度:中等 | |
某书店正在销售一种课外读本,进价12元/本,售价20元/本,为了促销,书店决定凡是一次购买10本以上的客户,每多买一本,售价就降低0.10元,但最低价为16元/本. (1)客户一次至少买多少本,才能以最低价购买? (2)求当一次购买x本时(x>10),书店利润y(元)与购买量x(本)之间的函数关系式; (3)在销售过程中,书店发现卖出50本比卖出46本赚的钱少,为了使每次的销售均能达到多卖出就多获利,在其他促销条件不变的情况下,最低价应确定为多少元/本?请说明理由. |
26. 难度:中等 | |
七年级我们曾学过“两点之间线段最短”的知识,常可利用它来解决两条线段和最小的相关问题,下面是大家非常熟悉的一道习题: 如图1,已知,A,B在直线l的同一侧,在l上求作一点,使得PA+PB最小. 我们只要作点B关于l的对称点B′,(如图2所示)根据对称性可知,PB=PB'.因此,求AP+BP最小就相当于求AP+PB′最小,显然当A、P、B′在一条直线上时AP+PB′最小,因此连接AB',与直线l的交点就是要求的点P. 有很多问题都可用类似的方法去思考解决. 探究: (1)如图3,正方形ABCD的边长为2,E为BC的中点,P是BD上一动点.连接EP,CP,则EP+CP的最小值是______ |
27. 难度:中等 | |
如图,在△ABC中,AB=AC=10,BC=16,M为BC的中点.⊙A的半径为3,动点O从点B出发沿BC方向以每秒1个单位的速度向点C运动,设运动时间为t秒. (1)当以OB为半径的⊙O与⊙A相切时,求t的值; (2)探究:在线段BC上是否存在点O,使得⊙O与直线AM相切,且与⊙A相外切?若存在,求出此时t的值及相应的⊙O的半径;若不存在,请说明理由. |
28. 难度:中等 | |
如图,已知抛物线过点A(0,6),B(2,0),C(7,). (1)求抛物线的解析式; (2)若D是抛物线的顶点,E是抛物线的对称轴与直线AC的交点,F与E关于D对称,求证:∠CFE=∠AFE; (3)在y轴上是否存在这样的点P,使△AFP与△FDC相似?若有请求出所有符和条件的点P的坐标;若没有,请说明理由. |