1. 难度:中等 | |
-3的相反数是( ) A. B. C.3 D.-3 |
2. 难度:中等 | |
明天数学课要学“勾股定理”.小敏在“百度”搜索引擎中输入“勾股定理”,能搜索到与之相关的结果个数 约为12 500 000,这个数用科学记数法表示为( ) A.1.25×105 B.1.25×106 C.1.25×107 D.1.25×108 |
3. 难度:中等 | |
如图,已知AB∥CD,BC平分∠ABE,∠C=34°,则∠BED的度数是( ) A.17° B.34° C.56° D.68° |
4. 难度:中等 | |
由5个相同的正方体搭成的几何体如图所示,则它的左视图是( ) A. B. C. D. |
5. 难度:中等 | |
如图,AB为⊙O的直径,点C在⊙O上.若∠C=16°,则∠BOC的度数是( ) A.74° B.48° C.32° D.16° |
6. 难度:中等 | |
一条排水管的截面如图所示.已知排水管的截面圆半径OB=10,截面圆圆心O到水面的距离OC是6,则水面宽AB是( ) A.16 B.10 C.8 D.6 |
7. 难度:中等 | |
在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为( ) A.2 B.4 C.12 D.16 |
8. 难度:中等 | |
如图,在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为( ) A.7 B.14 C.17 D.20 |
9. 难度:中等 | |
如图,在矩形ABCD中,AB=4cm,AD=2cm,动点M自点A出发沿A→B的方向,以每秒1cm的速度运动,同时动点N自点A出发沿A→D→C的方向以每秒2cm的速度运动,当点N到达点C时,两点同时停止运动,设运动时间为x(秒),△AMN的面积为y(cm2),则下列图象中能反映y与x之间的函数关系的是( ) A. B. C. D. |
10. 难度:中等 | |
如图,在△ABC中,∠C=90°,AC=4,BC=2,点A、C分别在x轴、y轴上,当点A在x轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点的最大距离是( ) A.6 B. C. D. |
11. 难度:中等 | |
因式分【解析】 x2+x= . |
12. 难度:中等 | |
为备战2011年4月11日在绍兴举行的第三届全国皮划艇马拉松赛,甲、乙运动员进行了艰苦的训练,他们在相同条件下各10次划艇成绩的平均数相同,方差分别为0.23,0.20,则成缋较为稳定的是 (填“甲”或“乙”)• |
13. 难度:中等 | |
若点A(1,y1)、B(2,y2)是双曲线y=上的点,则y1 y2(填“>”,“<”或“=”). |
14. 难度:中等 | |
一个圆锥的侧面展开图是半径为4,圆心角为90°的扇形,则此圆锥的底面半径为 . |
15. 难度:中等 | |
如图,在矩形ABCD中,BC=8,AB=6,经过点B和点D的两个动圆均与AC相切,且与AB、BC、AD、DC分别交于点G、H、E、F,则EF+GH的最小值是 . |
16. 难度:中等 | |
如图,巳知△ABC是面积为的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则△AEF的面积等于 (结果保留根号). |
17. 难度:中等 | |
(1)计算: (2)先化简.再求值:a(a-2b)+2(a+b)(a-b)+(a+b)2,其中a=-,b=1. |
18. 难度:中等 | |
如图,在一个10×10的正方形DEFG网格中有一个△ABC. ①在网格中画出△ABC向下平移3个单位得到的△A1B1C1; ②在网格中画出△ABC绕C点逆时针方向旋转90°得到的△A2B2C; ③若以EF所在的直线为x轴,ED所在的直线为y轴建立直角坐标系,写出A1、A2两点的坐标. |
19. 难度:中等 | |
为调查学生的身体素质,随机抽取了某市的若干所初中学校,根据学校学生的肺活量指标等级绘制了相应的统计图,如图. 根据以上统计图,解答下列问题: (1)这次调查共抽取了几所学校?请补全图1; (2)估计该市140所初中学校中,有几所学校的肺活量指标等级为优秀? |
20. 难度:中等 | |
为缓解交通压力,节约能源减少大气污染,上海市政府推行“P+R”模式(即:开自驾车人士,将车开到城郊结合部的轨道车站附近停车,转乘轨道交通到市中心).市郊某地正在修建地铁站,拟同步修建地下停车库. 如图,是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D、F,坡道AB的坡度i=1:3,AD=9米,C在DE上,DC=0.5米,CD是限高标志牌的高度(标志牌上写有:限高_____米).如果进入该车库车辆的高度不能超过线段CF的长,计算该停车库限高多少米.(结果精确到0.1米) (提供可选用的数据:) |
21. 难度:中等 | |
已知双曲线y=和直线AB的图象交于点A(-3,4),AC⊥x轴于点C. (1)求双曲线y=的解析式; (2)当直线AB绕着点A转动时,与x轴的交点为B(a,0),并与双曲线y=另一支还有一个交点的情形下,求△ABC的面积S与a之间的函数关系式,并指出a的取值范围. |
22. 难度:中等 | |
某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人;他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车. (1)每名熟练工和新工人每月分别可以安装多少辆电动汽车? (2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案? (3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能地少? |
23. 难度:中等 | |
如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s, (1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数; (2)何时△PBQ是直角三角形? (3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数. |
24. 难度:中等 | |
在平面直角坐标系中,抛物线y=ax2+bx+3与x轴的两个交点分别为A(-3,0)、B(1,0),过顶点C作CH⊥x轴于点H. (1)直接填写:a=______,b=______,顶点C的坐标为______; (2)在y轴上是否存在点D,使得△ACD是以AC为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由; (3)若点P为x轴上方的抛物线上一动点(点P与顶点C不重合),PQ⊥AC于点Q,当△PCQ与△ACH相似时,求点P的坐标. |