1. 难度:中等 | |
-|-3|的值等于( ) A.3 B.-3 C.±3 D. |
2. 难度:中等 | |
我们身处在自然环境中,一年接受的宇宙射线及其它天然辐射照射量约为3100微西弗(1西弗等于1000毫西弗,1毫西弗等于1000微西弗),用科学记数法可表示为( ) A.3.1x106西弗 B.3.1x103西弗 C.3.1x10-3西弗 D.3.1x10-6西弗 |
3. 难度:中等 | |
如图,已知A、B是反比例函数(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C.过P作PM⊥x轴,PN⊥y轴,垂足分别为M、N.设四边形OMPN的面积为S,P点运动时间为t,则S关于t的函数图象大致为( ) A. B. C. D. |
4. 难度:中等 | |
由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块有( ) A.3块 B.4块 C.6块 D.9块 |
5. 难度:中等 | |
如图,在△ABC中,AB=AC=10,CB=16,分别以AB、AC为直径作半圆,则图中阴影部分面积是( ) A.50π-48 B.25π-48 C.50π-24 D. |
6. 难度:中等 | |
已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为( ) A.(3,4) B.(2,4) C.(8,4) D.以上都对 |
7. 难度:中等 | |
若不等式2x<4的解都能使关于x的一次不等式(a-1)x<a+5成立,则a的取值范围是( ) A.1<a≤7 B.a≤7 C.a<1或a≥7 D.a=7 |
8. 难度:中等 | |
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①b2-4ac>0 ②a>0 ③b>0 ④c>0 ⑤9a+3b+c<0,则其中结论正确的个数是( ) A.2个 B.3个 C.4个 D.5个 |
9. 难度:中等 | |
的算术平方根是 . |
10. 难度:中等 | |
因式分【解析】 2x2y-2y= . |
11. 难度:中等 | |
要使式子 有意义,则a的取值范围为 . |
12. 难度:中等 | |
如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数的图象上.若点A的坐标为(-2,-2),则k的值为 . |
13. 难度:中等 | |
如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH(不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm2,四边形ABCD面积是11cm2,则①②③④四个平行四边形周长的总和为 . |
14. 难度:中等 | |
如图,在△ABC中,点D、E分别是边AB、AC的中点,DF过EC的中点G并与BC的延长线交于点F,BE与DE交于点O.若△ADE的面积为S,则四边形B0GC的面积= . |
15. 难度:中等 | |
若不等式组有实数解,则实数m的取值范围是 . |
16. 难度:中等 | |
如图1表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点A,且当钟面显示3点30分时,分针垂直于桌面,A点距桌面的高度为10公分.如图2,若此钟面显示3点45分时,A点距桌面的高度为16公分,则钟面显示3点50分时,A点距桌面的高度为 公分. |
17. 难度:中等 | |
解方程:. |
18. 难度:中等 | |
为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如右的调查问卷(单选).在随机调查了奉市全部5 000名司机中的部分司机后,统计整理并制作了如下的统计图: 根据以上信息解答下列问题: (1)补全条形统计图,并计算扇形统计图中m=______; (2)该市支持选项B的司机大约有多少人? (3)若要从该市支持选项B的司机中随机选择100名,给他们发放“请勿酒驾”的提醒标志,则支持该选项的司机小李被选中的概率是多少? |
19. 难度:中等 | |
如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线于F. (1)求证:∠DCP=∠DAP; (2)若AB=2,DP:PB=1:2,且PA⊥BF,求对角线BD的长. |
20. 难度:中等 | |
甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打笫一场比赛. (1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率; (2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率. |
21. 难度:中等 | |||||||||||||
在眉山市开展城乡综合治理的活动中,需要将A、B、C三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D、E两地进行处理.已知运往D地的数量比运往E地的数量的2倍少10立方米. (1)求运往两地的数量各是多少立方米? (2)若A地运往D地a立方米(a为整数),B地运往D地30立方米,C地运往D地的数量小于A地运往D地的2倍.其余全部运往E地,且C地运往E地不超过12立方米,则A、C两地运往D、E两地哪几种方案? (3)已知从A、B、C三地把垃圾运往D、E两地处理所需费用如下表:
|
22. 难度:中等 | |
如图是一座人行天桥的引桥部分的示意图,上桥通道由两段互相平行并且与地面成37°角的楼梯AD、BE和一段水平平台DE构成.已知天桥高度BC=4.8米,引桥水平跨度AC=8米. (1)求水平平台DE的长度; (2)若与地面垂直的平台立枉MN的高度为3米,求两段楼梯AD与BE的长度之比. (参考数据:取sin37°=0.60,cos37°=0.80,tan37°=0.75.) |
23. 难度:中等 | |
如图所示,AC为⊙O的直径且PA⊥AC,BC是⊙O的一条弦,直线PB交直线AC于点D,. (1)求证:直线PB是⊙O的切线; (2)求cos∠BCA的值. |
24. 难度:中等 | ||||||||||||||||||
2011年长江中下游地区发生了特大旱情.为抗旱保丰收,某地政府制定了农户投资购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ型抗旱设备投资的金额与政府补的额度存在下表所示的函数对应关系.
(2)有一农户同时对Ⅰ型、Ⅱ型两种设备共投资10万元购买,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额. |
25. 难度:中等 | |
已知抛物线. (1)试说明:无论m为何实数,该抛物线与x轴总有两个不同的交点. (2)如图,当抛物线的对称轴为直线x=3时,抛物线的顶点为点C,直线y=x-1与抛物线交于A、B两点,并与它的对称轴交于点D. ①抛物线上是否存在一点P使得四边形ACPD是正方形?若存在,求出点P的坐标;若不存在,说明理由; ②平移直线CD,交直线AB于点M,交抛物线于点N,通过怎样的平移能使得以C、D、M、N为顶点的四边形是平行四边形? |