1. 难度:中等 | |
-2的相反数是( ) A.2 B.-2 C. D. |
2. 难度:中等 | |
计算(a3)2的结果是( ) A.3a2 B.2a3 C.a5 D.a6 |
3. 难度:中等 | |
如图,直线a∥b,则∠A的度数是( ) A.28° B.31° C.39° D.42° |
4. 难度:中等 | |
一个正方体的表面展开图如图所示,则原正方体中的“★”所在面的对面所标的字是( ) A.花 B.红 C.刺 D.桐 |
5. 难度:中等 | |
把不等式-2x<4的解集表示在数轴上,正确的是( ) A. B. C. D. |
6. 难度:中等 | |
因干旱影响,市政府号召全市居民节约用水.为了了解居民节约用水的情况,小张在某小区随机调查了五户居民家庭2011年5月份的用水量:6吨,7吨,9吨,8吨,10吨.则关于这五户居民家庭月用水量的下列说法中,错误的是( ) A.平均数是8吨 B.中位数是9吨 C.极差是4吨 D.方差是2 |
7. 难度:中等 | |
将点A(4,0)绕着原点O顺时针方向旋转60°角到对应点A′,则点A′的坐标是( ) A.(4,-2) B.(2,) C.(2,) D.(,-2) |
8. 难度:中等 | |
反比例函数y=图象上有三个点(x1,y1),(x2,y2),(x3,y3),其中x1<x2<0<x3,则y1,y2,y3的大小关系是( ) A.y1<y2<y3 B.y2<y1<y3 C.y3<y1<y2 D.y3<y2<y1 |
9. 难度:中等 | |
如图,在△ABC中,已知∠A=90°,AB=AC=2,O为BC的中点,以O为圆心的圆弧分别与AB、AC相切于点D、E,则图中阴影部分的面积( ) A.1- B. C.1- D.2- |
10. 难度:中等 | |
已知二次函数y=x2-x+,当自变量x取m时,对应的函数值小于0,当自变量x取m-1、m+1时,对应的函数值为y1、y2,则y1、y2满足( ) A.y1>0,y2>0 B.y1<0,y2>0 C.y1<0,y2<0 D.y1>0,y2<0 |
11. 难度:中等 | |
分解因式:a3-10a2+25a= . |
12. 难度:中等 | |
方程x(x-1)=x的根是 . |
13. 难度:中等 | |
如图,BC是⊙O的弦,圆周角∠BAC=50°,则∠OCB的度数是 度. |
14. 难度:中等 | |
从-1,1,2三个数中任取一个,作为一次函数y=kx+3的k值,则所得一次函数中y随x的增大而增大的概率是 . |
15. 难度:中等 | |
如图,△ABC是一张直角三角形彩色纸,AC=30cm,BC=40cm.若将斜边上的高CD n等分,然后裁出(n-1)张宽度相等的长方形纸条.则这(n-1)张纸条的面积和是 cm2. |
16. 难度:中等 | |
(1)计算: (2)解不等式组:,并将解集在数轴上表示出来. |
17. 难度:中等 | |
(1)如图1,已知AB=AC,AD=AE,∠1=∠2,求证:BD=CE. (2)青青草原上,灰太狼每天都想着如何抓羊,而且是屡败屡试,永不言弃.(如图2所示)一天,灰太狼在自家城堡顶部A处测得懒羊羊所在地B处的俯角为60°.然后下到城堡的C处,测得B处的俯角为30°.已知AC=40米,若灰太狼以5m/s的速度从城堡底部D处出发,几秒钟后能抓到懒羊羊?(≈1.73,结果精确到个位) |
18. 难度:中等 | |
为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如右的调查问卷(单选).在随机调查了奉市全部5 000名司机中的部分司机后,统计整理并制作了如下的统计图: 根据以上信息解答下列问题: (1)补全条形统计图,并计算扇形统计图中m=______; (2)该市支持选项B的司机大约有多少人? (3)若要从该市支持选项B的司机中随机选择100名,给他们发放“请勿酒驾”的提醒标志,则支持该选项的司机小李被选中的概率是多少? |
19. 难度:中等 | |
已知:在⊙O中,AB是直径,AC是弦,OE⊥AC于点E,过点C作直线FC,使∠FCA=∠AOE,交AB的延长线于点D. (1)求证:FD是⊙O的切线; (2)设OC与BE相交于点G,若OG=4,求⊙O半径的长; (3)在(2)的条件下,当OE=6时,求图中阴影部分的面积.(结果保留根号) |
20. 难度:中等 | |
去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件. (1)求饮用水和蔬菜各有多少件? (2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来; (3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元? |
21. 难度:中等 | |
如图,在Rt△ABC中,∠C=90°,AC=3,AB=5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0). (1)当t=2时,AP=______,点Q到AC的距离是______; (2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围) (3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值;若不能,请说明理由; (4)当DE经过点C时,请直接写出t的值. |
22. 难度:中等 | |
已知抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点,且与y轴交于点C. (1)求抛物线y=ax2+bx+3(a≠0)的函数关系式及点C的坐标; (2)如图(1),连接AB,在题(1)中的抛物线上是否存在点P,使△PAB是以AB为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由; (3)如图(2),连接AC,E为线段AC上任意一点(不与A、C重合)经过A、E、O三点的圆交直线AB于点F,当△OEF的面积取得最小值时,求点E的坐标. |