1. 难度:中等 | ||||||||||||||||
某地今年1月1日至4日每天的最高气温与最低气温如下表:
A.1月1日 B.1月2日 C.1月3日 D.1月4日 |
2. 难度:中等 | |
一次课堂练习,王莉同学做了如下4道分解因式题,你认为王莉做得不够完整的一题是( ) A.x3-x=x(x2-1) B.x2-2xy+y2=(x-y)2 C.x2y-xy2=xy(x-y) D.x2-y2=(x-y)(x+y) |
3. 难度:中等 | |
如图,给出了过直线外一点作已知直线的平行线的方法,其依据是( ) A.同位角相等,两直线平行 B.内错角相等,两直线平行 C.同旁内角互补,两直线平行 D.两直线平行,同位角相等 |
4. 难度:中等 | |
如果4张扑克按图1的形式摆放在桌面上,将其中一张旋转180°后,扑克的放置情况如图2所示,那么旋转的扑克从左起是( ) A.第一张 B.第二张 C.第三张 D.第四张 |
5. 难度:中等 | |
今年5月18日.英美科学家公布了人类第一号染色体的基因测序图,这个染色体是人类“生命之书”中最长也是最后被破解的一章.据报道,第一号染色体中共有2.23亿个碱基对,2.23亿这个数用科学记数法可表示为( ) A.2.23×105 B.2.23×106 C.2.23×107 D.2.23×108 |
6. 难度:中等 | |
如图,是某中学七年级学生参加课外活动人数的扇形统计图,若参加舞蹈类的学生有42人,则参加球类活动的学生人数有( ) A.145 B.149 C.147 D.151 |
7. 难度:中等 | |
一个全透明的玻璃正方体,上面嵌有一根黑色的金属丝,如图,金属丝在俯视图中的形状是( ) A. B. C. D. |
8. 难度:中等 | |
如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有( ) A.4个 B.3个 C.2个 D.1个 |
9. 难度:中等 | |
如图,在Rt△ABC中,∠C=90°,AC=2,BC的长为常数,点P从起点C出发,沿CB向终点B运动,设点P所走过路程CP的长为x,△APB的面积为y,则下列图象能大致反映y与x之间的函数关系的是( ) A. B. C. D. |
10. 难度:中等 | |
在平面直角坐标系中,设点P到原点O的距离为ρ,OP与x轴的正方向的夹角为α,则用[ρ,α]表示点P的极坐标,显然,点P的坐标和它的极坐标存在一一对应关系,如点P的坐标(1,1)的极坐标为P[,45°],则极坐标Q[2,120°]的坐标为( ) A.(-,3) B.(-3,) C.(,3) D.(3,) |
11. 难度:中等 | |
有四张不透明的卡片为2,,π,,除正面的数不同外,其余都相同.将它们背面朝上洗匀后,从中随机抽取一张卡片,抽到写有无理数卡片的概率为 . |
12. 难度:中等 | |
某种蓄电池的电压为定值,使用此电源时,电流I(A)与可变电阻R(Ω)之间的函数关系如图所示,当用电器的电流为10A时,用电器的可变电阻为 Ω. |
13. 难度:中等 | |||||||||
日常生活中,“老人”是一个模糊概念.有人想用“老人系数”来表示一个人的老年化程度.他设想“老人系数”的计算方法如下表:
|
14. 难度:中等 | |
如图,已知正方形ABCD的边长为2.如果将线段BD绕着点B旋转后,点D落在CB的延长线上的D′点处,那么tan∠BAD′等于 . |
15. 难度:中等 | |
如图,矩形ABCD与圆心在AB上的⊙O交于点G、B、F、E,GB=8cm,AG=1cm,DE=2cm,则EF= cm. |
16. 难度:中等 | |
如图,石头A和石头B相距80cm,且关于竹竿l对称,一只电动青蛙在距竹竿30cm,距石头A为60cm的P1处,按如图所示的顺序循环跳跃.青蛙跳跃25次后停下,此时它与石头A相距 cm,与竹竿l相距 cm. |
17. 难度:中等 | |
计算:(x-y)2-(y+2x)(y-2x) |
18. 难度:中等 | |
解不等式组并将解集在数轴上表示出来:. |
19. 难度:中等 | |
(北师大版)用四块如图①所示的正方形瓷砖拼成一个新的正方形,使拼成的图案是一个轴对称图形.请你在图②、图③、图④中各画一种拼法(要求三种拼法各不相同,且其中至少一个既是轴对称图形,又是中心对称图形). |
20. 难度:中等 | |
市人民政府为了解决群众看病难的问题,决定下调药品的价格,某种药品,经过连续两次降价后,由每盒200元调至128元,求这种药品平均每次降价的百分率是多少? |
21. 难度:中等 | |
小明受《乌鸦喝水》故事的启发,利用量桶和体积相同的小球进行了如下操作: 请根据图中给出的信息,解答下列问题: (1)放入一个小球量桶中水面升高______cm; (2)求放入小球后量桶中水面的高度y(cm)与小球个数x(个)之间的一次函数关系式(不要求写出自变量的取值范围); (3)量桶中至少放入几个小球时有水溢出? |
22. 难度:中等 | |||||||||||||||
江苏省《居住区供配电设施建设标准》规定,住房面积在120m2及以下的居民住宅,用电的基本配置容量(电表的最大功率)应为8千瓦.为了了解某区该类住户家用电器总功率情况,有关部门从中随机调查了50户居民,所得数据(均取整数)如下:
(2)若该区这类居民约有2万户,请你估算这2万户居民家用电器总功率的平均值; (3)若这2万户居民原来用电的基本配置容量都为5千瓦,现市供电部门拟对家用电器总功率已超过5千瓦用户的电表首批增容,改造为8千瓦.请计算该区首批增容的用户约有多少户. |
23. 难度:中等 | |
在围棋盒中有x颗黑色棋子和y颗白色棋子,从盒中随机地取出一个棋子,如果它是黑色棋子的概率是. (1)试写出y与x的函数关系式. (2)若往盒中再放进10颗黑色棋子,则取得黑色棋子的概率变为,求x和y的值. |
24. 难度:中等 | |
如图:四边形ABCD中,E、F、G、H分别为各边的中点,顺次连接E、F、G、H,把四边形EFGH称为中点四边形.连接AC、BD,容易证明:中点四边形EFGH一定是平行四边形. (1)如果改变原四边形ABCD的形状,那么中点四边形的形状也随之改变,通过探索可以发现:当四边形ABCD的对角线满足AC=BD时,四边形EFGH为菱形. 当四边形ABCD的对角线满足______时,四边形EFGH为矩形; 当四边形ABCD的对角线满足______时,四边形EFGH为正方形; (2)探索三角形AEH、三角形CFG与四边形ABCD的面积之间的等量关系,请写出你发现的结论,并加以证明; (3)如果四边形ABCD的面积为2,那么中点四边形EFGH的面积是多少? |
25. 难度:中等 | |
如图,△ABC中,∠BAC=120°,AB=AC,BC=4,请你建立适当的直角坐标系,并写出A,B,C各点的坐标. |
26. 难度:中等 | |
图1是某学校存放学生自行车的车棚的示意图(尺寸如图所示),车棚顶部是圆柱侧面的一部分,其展开图是矩形.图2是车棚顶部截面的示意图,所在圆的圆心为O.车棚顶部是用一种帆布覆盖的,求覆盖棚顶的帆布的面积.(不考虑接缝等因素,计算结果保留π) |
27. 难度:中等 | |
某旅游胜地欲开发一座景观山.从山的侧面进行勘测,迎面山坡线ABC由同一平面内的两段抛物线组成,其中AB所在的抛物线以A为顶点、开口向下,BC所在的抛物线以C为顶点、开口向上.以过山脚(点C)的水平线为x轴、过山顶(点A)的铅垂线为y轴建立平面直角坐标系如图(单位:百米).已知AB所在抛物线的解析式为y=-x2+8,BC所在抛物线的解析式为y=(x-8)2,且已知B(m,4). (1)设P(x,y)是山坡线AB上任意一点,用y表示x,并求点B的坐标; (2)从山顶开始、沿迎面山坡往山下铺设观景台阶.这种台阶每级的高度为20厘米,长度因坡度的大小而定,但不得小于20厘米,每级台阶的两端点在坡面上(见图). ①分别求出前三级台阶的长度(精确到厘米); ②这种台阶不能一直铺到山脚,为什么? (3)在山坡上的700米高度(点D)处恰好有一小块平地,可以用来建造索道站.索道的起点选择在山脚水平线上的点E处,OE=1600(米).假设索道DE可近似地看成一段以E为顶点、开口向上的抛物线,解析式为y=(x-16)2.试求索道的最大悬空高度. |