1. 难度:中等 | |
3的相反数是( ) A.3 B.-3 C. D.- |
2. 难度:中等 | |
使有意义的x的取值范围是( ) A. B. C. D. |
3. 难度:中等 | |
如图是由四个小正方体叠成的一个立体图形,那么它的俯视图是( ) A. B. C. D. |
4. 难度:中等 | |
如图,已知在▱ABCD中,∠A=154°,则∠B等于( ) A.154° B.46° C.36° D.26° |
5. 难度:中等 | |
如图,四个边长为1的小正方形拼成一个大正方形,A、B、O是小正方形顶点,⊙O的半径为1,P是⊙O上的点,且位于右上方的小正方形内,则sin∠APB等于( ) A. B. C. D.1 |
6. 难度:中等 | |
某校举行才艺比赛,三个年级均有男、女各一名选手进入决赛,决赛的规则是男、女各一名选手组成搭档展示才艺,则恰好同一年级的男、女选手组成搭档的概率是( ) A. B. C. D. |
7. 难度:中等 | |
如图所示,⊙M与x轴相切于原点,平行于y轴的直线交圆于P,Q两点,P点在Q点的下方,若P点坐标是(2,1),则圆心M的坐标是( ) A.(0,3) B.(0,) C.(0,2) D.(0,) |
8. 难度:中等 | |
小明用一个半径为5cm,面积为15πcm2的扇形纸片,制作成一个圆锥的侧面(接缝处不重叠),那么这个圆锥的底面半径为( ) A.3cm B.4cm C.5cm D.15cm |
9. 难度:中等 | |
下列四个三角形中,与图中的三角形相似的是( ) A. B. C. D. |
10. 难度:中等 | |
在平面直角坐标系中,形如(m,n2)的点涂上红色(其中m、n为整数),称为红点,其余不涂色,那么抛物线y=x2-2x+9上有( )个红点. A.2个 B.4个 C.6个 D.无数个 |
11. 难度:中等 | |
因式分【解析】 b2-4= . |
12. 难度:中等 | |
日本媒体报道,日本福田核电站1号和2号两台机组在被9.0级强震及海啸摧毁之前,今年共累计发电142.06亿千瓦时.“142.06亿”用科学记数法可表示为 . |
13. 难度:中等 | |
点C是线段AB的黄金分割点,(AC>BC),则BC= AC. |
14. 难度:中等 | |
如图,三角形纸板放置在量角器上,三角形的顶点点C恰在半圆上,两边与半圆的交点记为A、B,A点的读数为86°,B点的读数为30°,则∠ACB的大小为 . |
15. 难度:中等 | |
如图,菱形ABCD的边长为cm,菱形的四个顶点正好能放在间隔距离(相邻两条平行线间的距离)为1cm的一组平行线上,则菱形的面积为 cm2. |
16. 难度:中等 | |
如图所示,已知:点A(0,0),B(,0),C(0,1)在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…,则第n个等边三角形的边长等于 . |
17. 难度:中等 | |
计算:|-2|+2sin30°-(-)2+(tan45°)-1. |
18. 难度:中等 | |
解分式方程: |
19. 难度:中等 | |
在2010年上海世博会举行期间,某初级中学组织全校学生参观世博园,亲身体验“城市让生活更美好”的世博理念.为了解学生就学校统一组织参观过的5个场馆的最喜爱程度,随机抽取该校部分学生进行问卷调查(每人应选且只能选一个场馆),数据整理后,绘制成如下的统计图: 请根据统计图提供的信息回答下列问题: (1)本次随机抽样调查的样本容量是______; (2)本次随机抽样调查的统计数据中,男生最喜爱场馆的中位数是______名; (3)估计该校女生最喜爱泰国馆的约占全校学生数的______%(保留三个有效数字); (4)如果该校共有2000名学生,而且六、七、八年级学生人数总和比九年级学生人数的3倍还多200名,试通过计算估计该校九年级学生最喜爱中国馆的人数约为多少名? |
20. 难度:中等 | |
如图,已知线段a及∠O. (1)只用直尺和圆规,求作△ABC,使BC=a,∠B=∠O,∠C=2∠B(在指定作图区域作图,保留作图痕迹,不写作法); (2)在△ABC中作BC的中垂线分别交AB、BC于点E、F,如果∠B=30°,求四边形AEFC与△ABC的面积之比. |
21. 难度:中等 | |
如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE. 求证: (1)△AFD≌△CEB; (2)四边形ABCD是平行四边形. |
22. 难度:中等 | |
如图,以线段AB为直径的⊙O交线段AC于点E,点M是的中点,OM交AC于点D,∠BOE=60°,cosC=,BC=2. (1)求∠A的度数; (2)求证:BC是⊙O的切线; (3)求MD的长度. |
23. 难度:中等 | |||||||||||||
为改善城市生态环境,实现城市生活垃圾减量化、资源化、无害化的目标,我市决定从2010年3月1日起,在全市部分社区试点实施生活垃圾分类处理.某街道计划建造垃圾初级处理点20个,解决垃圾投放问题.有A、B两种类型处理点的占地面积可供使用居民楼幢数及造价见下表:
(1)满足条件的建造方案共有几种?写出解答过程. (2)通过计算判断,哪种建造方案最省钱,最少需要多少万元? |
24. 难度:中等 | |
矩形OABC在平面直角坐标系中位置如图所示,A、C两点的坐标分别为A(6,0),C(0,-3),直线与BC边相交于D点. (1)求点D的坐标; (2)若抛物线经过点A,求此抛物线的表达式及对称轴; (3)设(2)中的抛物线的对称轴与直线OD交于点M,点P为坐标轴上一动点,以P、O、M为顶点的三角形与△OCD相似,求出点M的坐标和符合条件的点P的坐标; (4)当(3)中符合条件的△POM面积最大时,过点O的直线l将其面积分为1:3两部分,请直接写出直线l的解析式. |