1. 难度:中等 | |
如图,数轴上点A所表示的数的倒数是( ) A.-2 B.2 C. D. |
2. 难度:中等 | |
我国在2009到2011三年中,各级政府投入医疗卫生领域资金达8500亿元人民币.将“8500亿元”用科学记数法表示为( ) A.8.5×1010元 B.8.5×1011元 C.0.85×1011元 D.0.85×1012元 |
3. 难度:中等 | |
下列运算正确的是( ) A.3x2-2x2=x2 B.(-2a)2=-2a2 C.(a+b)2=a2+b2 D.-2(a-1)=-2a-1 |
4. 难度:中等 | |
将一副三角板如图叠放,问∠1的度数为( ) A.60° B.30° C.75° D.55° |
5. 难度:中等 | |
如图为△ABC与圆O的重叠情形,其中BC为⊙O之直径.若∠A=70°,BC=2,则图中灰色区域的面积为何?( ) A. B. C. D. |
6. 难度:中等 | |
为了迎接中考体育达标测试,李强同学记录了自己5次投掷实心球的成绩(单位:m):8,8.5,9,8.5,9.2.这组数据的众数、中位数依次是( ) A.8.64,9 B.8.5,9 C.8.5,8.75 D.8.5,8.5 |
7. 难度:中等 | |
函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c-3=0的根的情况是( ) A.有两个不相等的实数根 B.有两个异号实数根 C.有两个相等实数根 D.无实数根 |
8. 难度:中等 | |
如图,在正方形ABCD中,点E在AB边上,且AE:EB=2:1,AF⊥DE于G,交BC于F,则△AEG的面积与四边形BEGF的面积之比为( ) A.1:2 B.1:4 C.4:9 D.2:3 |
9. 难度:中等 | |
式子有意义,则m的取值范围 . |
10. 难度:中等 | |
如图,AB,BC是⊙O的两条弦,AB垂直平分半径OD,∠ABC=75°,BC=cm,则OC的长为 cm. |
11. 难度:中等 | |
计算:= |
12. 难度:中等 | |
因式分【解析】 ax2-10ax+25a= . |
13. 难度:中等 | |
若二次函数y=mx2-3x+2m-m2的图象经过原点,则m= . |
14. 难度:中等 | |
如图,⊙O内切于△ABC,切点分别为D、E、F,且DE∥BC,若AB=8cm,AD=5cm,则△ADE的周长是 cm. |
15. 难度:中等 | |
已知正六边形的边长为1cm,分别以它的三个不相邻的顶点为圆心,1cm长为半径画弧(如图),则阴影部分面积是 cm2(结果保留π). |
16. 难度:中等 | |
下列图形是用棋子摆成的图案,摆第1个图形需要7枚棋子,摆第2个图形需要19枚棋子,摆第3个图形需要37枚棋子,按照这样的方式摆下去,则摆第5个图形需要 枚棋子. |
17. 难度:中等 | |
先化简,再求值:,其中. |
18. 难度:中等 | |
如图,在边长为1的小正方形组成的网格中,△ABC的顶点均在格点上,请按要求完成下列各题: (1)以直线BC为对称轴作△ABC的轴对称图形,得到△A1BC,再将△A1BC绕着点B逆时针旋转90°,得到△A2BC2,请在下面网格中画出△A1BC、△A2BC2; (2)求线段BC旋转到BC1过程中,C点所经过的路线长度(计算结果用含有π的式子表示). |
19. 难度:中等 | |
如图所示,有一个可以自由转动的圆形转盘,被平均分成四个扇形,四个扇形内分别标有数字1、2、-3、-4.指针固定,转动转盘后任其自由停止,指针所指扇形得到相应位置上的数字(若指针恰好指在分界线上,则该次不计,重新转动一次,直至指针落在扇形内). (1)若将转盘转动一次,求得到负数的概率; (2)若将转盘转动两次,每一次停止转动后,指针指向的扇形内的数字分别记为a、b.请你用列表法或树状图求a与b都是方程x2+2x-8=0的解的概率. |
20. 难度:中等 | |
“学生坐校车上学”的安全问题越来越受到社会的关注,某校利用周末假期,随机抽查了本校若干名学生和部分家长对“初中生坐校车上学”现象的看法,统计整理制作了如下的统计图,请回答下列问题: (1)这次抽查的家长总人数为______; (2)请补全条形统计图和扇形统计图; (3)从这次接受调查的学生中,随机抽查一个学生恰好抽到持“无所谓”态度的概率是______. |
21. 难度:中等 | |
如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度(竖直高度与水平宽度的比)i=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测倾器高度忽略不计,结果保留根号形式) |
22. 难度:中等 | |
如图,在平面直角坐标系xOy中,一次函数y=-2x的图象与反比例函数y=的图象的一个交点为A(-1,n). (1)求反比例函数y=的解析式; (2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标. |
23. 难度:中等 | |
市教育局决定分别配发给一中8台电脑,二中10台电脑,但现在仅有12台,需在商场购买6台.从市教育局运一台电脑到一中、二中的运费分别是30元和50元,从商场运一台电脑到一中、二中的运费分别是40元和80元.要求总运费不超过840元,问有几种调运方案?指出运费最低的方案. |
24. 难度:中等 | |
如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P. (1)连接PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由; (2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形. |
25. 难度:中等 | |
在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A1B1C. (1)如图1,当AB∥CB1时,设A1B1与BC相交于D.证明:△A1CD是等边三角形; (2)如图2,连接AA1、BB1,设△ACA1和△BCB1的面积分别为S1、S2.求证:S1:S2=1:3; (3)如图3,设AC中点为E,A1B1中点为P,AC=a,连接EP,当θ=______°时,EP长度最大,最大值为______. |
26. 难度:中等 | |
如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D. (1)求该抛物线的函数关系式; (2)当△ADP是直角三角形时,求点P的坐标; (3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由. |