1. 难度:中等 | |
-是的( ) A.相反数 B.倒数 C.绝对值 D.算术平方根 |
2. 难度:中等 | |
如图,立体图形的主视图是( ) A. B. C. D. |
3. 难度:中等 | |
中央电视台“情系玉树,大爱无疆”赈灾晚会共收到社会各界为玉树捐款2175000000元,用科学记数法表示捐款数应为( ) A.2.175×1010元 B.2.175×109元 C.21.75×108元 D.217.5×107元 |
4. 难度:中等 | |
将一副三角板按图中的方式叠放,则∠α等于( ) A.75° B.60° C.45° D.30° |
5. 难度:中等 | |
下列等式成立的是( ) A.(a2)3=a6 B.2a2-3a=-a C.a6÷a3=a2 D.(a+4)(a-4)=a2-4 |
6. 难度:中等 | |
某洗衣机在洗涤衣服时经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水),在这三个过程中洗衣机内水量y(升)与时间x(分)之间的函数关系对应的图象大致为( ) A. B. C. D. |
7. 难度:中等 | |
某品牌服装折扣店将某件衣服按进价提高50%后标价,再打8折(标价的80%)销售,售价为240元.设这件衣服的进价为x元,根据题意,下面所列的方程正确的是( ) A.x•50%×80%=240 B.x•(1+50%)×80%=240 C.240×50%×80%= D.x•(1+50%)=240×80% |
8. 难度:中等 | |
边长为1的正方形ABCD绕点A逆时针旋转30°得到正方形ABC′D′,两图叠成一个“蝶形风筝”(如图所示阴影部分),则这个风筝的面积是( ) A. B. C. D.2 |
9. 难度:中等 | |
关于x的方程(a-5)x2-4x-1=0有实数根,则a满足( ) A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠5 |
10. 难度:中等 | |
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论: ①b2-4ac>0; ②abc>0; ③8a+c>0; ④9a+3b+c<0 其中,正确结论的个数是( ) A.1 B.2 C.3 D.4 |
11. 难度:中等 | |
计算2x2•(-3x3)的结果是 . |
12. 难度:中等 | |
因式分【解析】 2x2y-8xy+8y= . |
13. 难度:中等 | |
如图,AB∥CD,∠A=60°,∠C=25°,G、H分别为CF、CE的中点,则∠1= 度. |
14. 难度:中等 | |
已知圆锥的底面半径为4cm,高为3cm,则这个圆锥的侧面积为 cm2. |
15. 难度:中等 | |
某市为治理污水,需要铺设一段全长为300m的污水排放管道.铺设120m后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加20%,结果共用30天完成这一任务、求原计划每天铺设管道的长度,如果设原计划每天铺设xm管道,那么根据题意,可得方程 . |
16. 难度:中等 | |
古希腊数学家把数1,3,6,10,15,21…叫做三角形数,它有一定的规律性,若把第一个三角形数记为a1,第二个三角形数记为a2,…,第n个三角形数记为an,计算a2-a1,a3-a2,a4-a3,…,由此推算,a100-a99= ,a100= . |
17. 难度:中等 | |
(1)解分式方程:. (2)计算:. |
18. 难度:中等 | |
如图,小明在楼上点A处观察旗杆BC,测得旗杆顶部B的仰角为30°,测得旗杆底部C的俯角为60°,已知点A距地面的高AD为12m.求旗杆的高度. |
19. 难度:中等 | |
将5个完全相同的小球分装在甲、乙两个不透明的口袋中.甲袋中有3个球,分别标有数字2,3,4;乙袋中有2个球,分别标有数字2,4.从甲、乙两个口袋中各随机摸出一个球. (1)用列表法或画树状图法,求摸出的两个球上数字之和为5的概率. (2)摸出的两个球上数字之和为多少时的概率最大? |
20. 难度:中等 | |
如图所示一次函数y=x+b与反比例函数在第一象限的图象交于点B,且点B的横坐标为1,过点B作y轴的垂线,C为垂足,若S△BCO=,求一次函数和反比例函数的解析式. |
21. 难度:中等 | |||||||||
正方形ABCD与正方形CEFG的位置如图所示,点G在线段CD或CD的延长线上,分别连接BD、BF、FD,得到△BFD. (1)在图1-图3中,若正方形CEFG的边长分别为1、3、4,且正方形ABCD的边长均为3,请通过计算填写下表:
|
22. 难度:中等 | |
将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F. (1)求证:AF+EF=DE; (2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其它条件不变,请在图②中画出变换后的图形,并直接写出你在(1)中猜想的结论是否仍然成立; (3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其它条件不变,如图③.你认为(1)中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出AF、EF与DE之间的关系,并说明理由. |
23. 难度:中等 | ||||||||||
某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:
(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案. |
24. 难度:中等 | |
某市政府大力扶持大学生创业,李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-10x+500. (1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润? (2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元? (3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元? (成本=进价×销售量) |