1. 难度:中等 | |
-2的相反数是( ) A.2 B.-2 C. D. |
2. 难度:中等 | |
计算(a2)3的结果是( ) A.a5 B.a6 C.a8 D.3a2 |
3. 难度:中等 | |
如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是( ) A.a+b>0 B.ab>0 C.a-b>0 D.|a|-|b|>0 |
4. 难度:中等 | |
下面四个几何体中,左视图是四边形的几何体共有( ) A.1个 B.2个 C.3个 D.4个 |
5. 难度:中等 | |
如图,在5×5方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个矩形,那么,下面的平移方法中,正确的是( ) A.先向下平移3格,再向右平移1格 B.先向下平移2格,再向右平移1格 C.先向下平移2格,再向右平移2格 D.先向下平移3格,再向右平移2格 |
6. 难度:中等 | |||||||||||||||
某商场试销一种新款衬衫,一周内销售情况如下表所示:商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( )
A.平均数 B.众数 C.中位数 D.方差 |
7. 难度:中等 | |
如图,给出下列四组条件: ①AB=DE,BC=EF,AC=DF; ②AB=DE,∠B=∠E,BC=EF; ③∠B=∠E,BC=EF,∠C=∠F; ④AC=DF,∠A=∠D,∠B=∠E; 其中能使△ABC≌△DEF的条件共有( ) A.1组 B.2组 C.3组 D.4组 |
8. 难度:中等 | |
下面是按一定规律排列的一列数: 第1个数:; 第2个数:; 第3个数:; … 第n个数:. 那么,在第10个数,第11个数,第12个数,第13个数中,最大的数是( ) A.第10个数 B.第11个数 C.第12个数 D.第13个数 |
9. 难度:中等 | |
计算:(-3)2= . |
10. 难度:中等 | |
使有意义的x的取值范围是 . |
11. 难度:中等 | |
江苏省的面积约为102 600km2,这个数据用科学记数法可表示为 km2. |
12. 难度:中等 | |
反比例函数y=-的图象在第 象限. |
13. 难度:中等 | |
某县2008年农民人均年收入为7 800元,计划到2010年,农民人均年收入达到9 100元.设人均年收入的平均增长率为x,则可列方程 . |
14. 难度:中等 | |
若3a2-a-2=0,则5+2a-6a2= . |
15. 难度:中等 | |
如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1,2,3,4,5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P(偶数),指针指向标有奇数所在区域的概率为P(奇数),则P(偶数) P(奇数). |
16. 难度:中等 | |
如图,AB是⊙O的直径,弦CD∥AB.若∠ABD=65°,则∠ADC= 度. |
17. 难度:中等 | |
已知正六边形的边长为1cm,分别以它的三个不相邻的顶点为圆心,1cm长为半径画弧(如图),则所得到的三条弧的长度之和为 cm(结果保留π). |
18. 难度:中等 | |
如图,已知EF是梯形ABCD的中位线,△DEF的面积为4cm2,则梯形ABCD的面积为 cm2. |
19. 难度:中等 | |
计算:(1); (2). |
20. 难度:中等 | |||||||||||||||||||||
某市对九年级学生进行了一次学业水平测试,成绩评定分A、B、C、D四个等第.为了解这次数学测试成绩情况,相关部门从该市的农村、县镇、城市三类群体的学生中共抽取2 000名学生的数学成绩进行统计分析,相应数据的统计图表如下: 各类学生成绩人数比例统计表:
(1)请将上面表格中缺少的三个数据补充完整; (2)若该市九年级共有60 000名学生参加测试,试估计该市学生成绩合格以上(含合格)的人数. |
21. 难度:中等 | |
一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现1个男婴、2个女婴的概率是多少? |
22. 难度:中等 | |
一辆汽车从A地驶往B地,前路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,汽车从A地到B地一共行驶了2.2h. 请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用二元一次方程组解决的问题,并写出解答过程. |
23. 难度:中等 | |
如图,在梯形ABCD中,AD∥BC,AB∥DE,AF∥DC,E、F两点在边BC上,且四边形AEFD是平行四边形. (1)AD与BC有何等量关系,请说明理由; (2)当AB=DC时,求证:平行四边形AEFD是矩形. |
24. 难度:中等 | |
如图,已知二次函数y=x2-2x-1的图象的顶点为A.二次函数y=ax2+bx的图象与x轴交于原点O及另一点C,它的顶点B在函数y=x2-2x-1的图象的对称轴上. (1)求点A与点C的坐标; (2)当四边形AOBC为菱形时,求函数y=ax2+bx的关系式. |
25. 难度:中等 | |
如图,在航线l的两侧分别有观测点A和B,点A到航线l的距离为2km,点B位于点A北偏东60°方向且与A相距10km处.现有一艘轮船从位于点B南偏西76°方向的C处,正沿该航线自西向东航行,5min后该轮船行至点A的正北方向的D处. (1)求观测点B到航线l的距离; (2)求该轮船航行的速度(结果精确到0.1km/h).(参考数据:≈1.73,sin76°≈0.97,cos76°≈0.24,tan76°≈4.01) |
26. 难度:中等 | |
(1)观察与发现: 小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图①);在第一次的折叠基础上第二次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图②).小明认为△AEF是等腰三角形,你同意吗?请说明理由. (2)实践与运用: 将矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图③);再沿过点E的直线折叠,使点D落在BE上的点D′处,折痕为EG(如图④);再展平纸片(如图⑤).求图⑤中∠α的大小. |
27. 难度:中等 | |
某加油站五月份营销一种油品的销售利润y(万元)与销售量x(万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元. (销售利润=(售价-成本价)×销售量) 请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题: (1)求销售量x为多少时,销售利润为4万元; (2)分别求出线段AB与BC所对应的函数关系式; (3)我们把销售每升油所获得的利润称为利润率,那么,在OA、AB、BC三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案) |
28. 难度:中等 | |
如图,已知射线DE与x轴和y轴分别交于点D(3,0)和点E(0,4).动点C从点M(5,0)出发,以1个单位长度/秒的速度沿x轴向左作匀速运动,与此同时,动点P从点D出发,也以1个单位长度/秒的速度沿射线DE的方向作匀速运动.设运动时间为t秒. (1)请用含t的代数式分别表示出点C与点P的坐标; (2)以点C为圆心、t个单位长度为半径的⊙C与x轴交于A、B两点(点A在点B的左侧),连接PA、PB. ①当⊙C与射线DE有公共点时,求t的取值范围; ②当△PAB为等腰三角形时,求t的值. |