1. 难度:中等 | |
-2010的相反数是( ) A.2010 B.-2010 C. D. |
2. 难度:中等 | |
下列运算正确的是( ) A.-2(a+b)=-2a-b B.-2(a+b)=-2a+b C.-2(a+b)=-2a-2b D.-2(a+b)=-2a+2b |
3. 难度:中等 | |
2009年10月11日,第十一届全运会将在美丽的泉城济南召开.奥体中心由体育场,体育馆、游泳馆、网球馆,综合服务楼三组建筑组成,呈“三足鼎立”、“东荷西柳”布局.建筑面积约为359 800平方米,请用科学记数法表示建筑面积是多少平方米(保留三个有效数字)( ) A.35.9×105 B.3.60×105 C.3.59×105 D.35.9×104 |
4. 难度:中等 | |
如图所示几何体的左视图是( ) A. B. C. D. |
5. 难度:中等 | |
如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线BD重合,折痕为DG,则AG的长为( ) A.1 B. C. D.2 |
6. 难度:中等 | |
分解因式:x2-9= . |
7. 难度:中等 | |
如图,AB是直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为cm,则弦CD的长为 cm. |
8. 难度:中等 | |
孔明同学买铅笔m支,每支0.4元,买练习本n本,每本2元.那么他买铅笔和练习本一共花了 元. |
9. 难度:中等 | |
如图,AB∥CD,AC⊥BC,∠BAC=65°,则∠BCD= 度. |
10. 难度:中等 | |
如图①,图②,图③,图④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是 ,第n个“广”字中的棋子个数是 . |
11. 难度:中等 | |
计算:-2-1+|-3|-5cos60°. |
12. 难度:中等 | |
解分式方程:. |
13. 难度:中等 | |
如图,一次函数的图象过点P(2,3),交x轴的正半轴与A,交y轴的正半轴与B,求△AOB面积的最小值. |
14. 难度:中等 | |
如图,一盏路灯沿灯罩边缘射出的光线与地面BC交于点B、C,测得∠ABC=45°,∠ACB=30°,且BC=20米. (1)请用圆规和直尺画出路灯A到地面BC的距离AD;(不要求写出画法,但要保留作图痕迹) (2)求出路灯A离地面的高度AD.(精确到0.1米)(参考数据:≈1.414,≈1.732). |
15. 难度:中等 | |
2009年5月17日至21日,甲型H1N1流感在日本迅速蔓延,每天的新增病例和累计确诊病例人数如图所示. (1)在5月17日至5月21日这5天中,日本新增甲型H1N1流感病例最多的是哪一天?该天增加了多少人? (2)在5月17日至5月21日这5天中,日本平均每天新增加甲型H1N1流感确诊病例多少人?如果接下来的5天中,继续按这个平均数增加,那么到5月26日,日本甲型H1N1流感累计确诊病例将会达到多少人? (3)甲型H1N1流感病毒的传染性极强,某地因1人患了甲型H1N1流感没有及时隔离治疗,经过两天传染后共有9人患了甲型H1N1流感,每天传染中平均一个人传染了几个人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型H1N1流感? |
16. 难度:中等 | |
如图是在地上画出的半径分别为2m和3m的同心圆.现在你和另一人分别蒙上眼睛,并在一定距离外向圈内掷一粒较小的石子,规定一人掷中小圆内得胜,另一人掷中阴影部分得胜,未掷入半径为3m的圆内或石子压在圆周上都不算. (1)你会选择掷中小圆内得胜,还是掷中阴影部分得胜?为什么? (2)你认为这个游戏公平吗?如果不公平,那么大圆不变,小圆半径是多少时,使得仍按原规则进行,游戏是公平的?(只需写出小圆半径,不必说明原因) |
17. 难度:中等 | |
晓跃汽车销售公司到某汽车制造厂选购A、B两种型号的轿车,用300万元可购进A型轿车10辆,B型轿车15辆;用300万元也可以购进A型轿车8辆,B型轿车18辆. (1)求A、B两种型号的轿车每辆分别为多少元? (2)若该汽车销售公司销售1辆A型轿车可获利8000元,销售1辆B型轿车可获利5000元,该汽车销售公司准备用不超过400万元购进A、B两种型号轿车共30辆,且这两种轿车全部售出后总获利不低于20.4万元,问有几种购车方案?在这几种购车方案中,该汽车销售公司将这些轿车全部售出后,分别获利多少万元? |
18. 难度:中等 | |
学习投影后,小明、小颖利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律.如图,在同一时间,身高为1.6m的小明(AB)的影子BC长是3m,而小颖(EH)刚好在路灯灯泡的正下方H点,并测得HB=6m. (1)请在图中画出形成影子的光线,并确定路灯灯泡所在的位置G; (2)求路灯灯泡的垂直高度GH; (3)如果小明沿线段BH向小颖(点H)走去,当小明走到BH中点B1处时,求其影子B1C1的长;当小明继续走剩下路程的到B2处时,求其影子B2C2的长;当小明继续走剩下路程的到B3处,…按此规律继续走下去,当小明走剩下路程的到Bn处时,其影子BnCn的长为______m.(直接用n的代数式表示) |
19. 难度:中等 | |
如图1、2,图1是一个小朋友玩“滚铁环”的游戏,铁环是圆形的,铁环向前滚动时,铁环钩保持与铁环相切.将这个游戏抽象为数学问题,如图2.已知铁环的半径为5个单位(每个单位为5cm),设铁环中心为O,铁环钩与铁环相切点为M,铁环与地面接触点为A,∠MOA=α,且sinα=. (1)求点M离地面AC的高度BM(单位:厘米); (2)设人站立点C与点A的水平距离AC等于11个单位,求铁环钩MF的长度(单位:厘 米). |
20. 难度:中等 | |
如图:在直角坐标系中放入一边长OC为6的矩形纸片ABCO,将纸翻折后,使点B恰好落在x轴上,记为B',折痕为CE,已知tan∠OB′C=. (1)求出B′点的坐标; (2)求折痕CE所在直线的解析式; (3)作B′G∥AB交CE于G,已知抛物线y=x2-通过G点,以O为圆心OG的长为半径的圆与抛物线是否还有除G点以外的交点?若有,请找出这个交点坐标. |
21. 难度:中等 | |
已知:如图,在平行四边形ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C重合,得△GFC. (1)求证:BE=DG; (2)若∠B=60°,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论. |
22. 难度:中等 | |
如图所示,已知直线L过点A(0,1)和B(1,0),P是x轴正半轴上的动点,OP的垂直平分线交L于点Q,交x轴于点M. (1)直接写出直线L的解析式; (2)设OP=t,△OPQ的面积为S,求S关于t的函数关系式;并求出当0<t<2时,S的最大值; (3)直线L1过点A且与x轴平行,问在L1上是否存在点C,使得△CPQ是以Q为直角顶点的等腰直角三角形?若存在,求出点C的坐标,并证明;若不存在,请说明理由. |