1. 难度:中等 | |
-6的相反数是( ) A.-6 B.- C. D.6 |
2. 难度:中等 | |
温家宝总理有一句名言:“多么小的问题,乘以13亿,都会变得很大,多么大的经济总量,除以13亿,都会变得很小”.如果每人每天浪费0.01千克粮食,我国13亿人每天就浪费粮食( ) A.1.3×105千克 B.1.3×106千克 C.1.3×107千克 D.1.3×108千克 |
3. 难度:中等 | |
函数y=中自变量x的取值范围是( ) A.x≥1 B.x≥-1 C.x≤1 D.x≤-1 |
4. 难度:中等 | |
将如图所示放置的一个直角三角形ABC(∠C=90°,AC>BC),绕斜边AB旋转一周,所得到的几何体的正视图是下面四个图中的( ) A. B. C. D. |
5. 难度:中等 | |
在反比例函数y=(k<0)的图象上有两点A(x1,y1),B(x2,y2),且x1>x2>0,则y1-y2的值为( ) A.正数 B.负数 C.非正数 D.非负数 |
6. 难度:中等 | |
把不等式组:的解集表示在数轴上,正确的是( ) A. B. C. D. |
7. 难度:中等 | |
为了筹备班级初中毕业联欢会,班长对全班同学爱吃哪几种水果作了民意调查,那么最终买什么水果,下面的调查数据中最值得关注的是( ) A.平均数 B.加权平均数 C.中位数 D.众数 |
8. 难度:中等 | |
一副三角板如图叠放在一起,则图中∠α的度数为( ) A.75° B.60° C.65° D.55° |
9. 难度:中等 | |
图1、图2、图3是三种方法将6根钢管用钢丝捆扎的截面图,三种方法所用的钢丝长分别为a,b,c,(不记接头部分),则a,b,c的大小关系为( ) A.a=b>c B.a=b=c C.a<b<c D.a>b>c |
10. 难度:中等 | |
如图.在直角坐标系中,矩形ABC0的边OA在x轴上,边0C在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E.那么点D的坐标为( ) A. B. C. D. |
11. 难度:中等 | |
若2x+5y-3=0,则4x•32y的值为 . |
12. 难度:中等 | |
如图,直线y=-x+4与y轴交于点A,与直线y=x+交于点B,且直线y=x+与x轴交于点C,则△ABC的面积为 . |
13. 难度:中等 | |
如图所示,△ABC是⊙O的内接三角形,AD⊥BC于D点,且AC=5,DC=3,AB=,则⊙O的直径等于 . |
14. 难度:中等 | |
如图所示,⊙M与x轴相交于点A(2,0),B(8,0),与y轴相切于点C,则圆心M的坐标是 . |
15. 难度:中等 | |
钟表的轴心到分针针端的长为4cm,那么经过40分钟,分针针端转过的弧长是 cm(用π表示). |
16. 难度:中等 | |
如图,点D为AC上一点,点O为边AB上一点,AD=DO.以O为圆心,OD长为半径作圆,交AC于另一点E,交AB于点F,G,连接EF.若∠BAC=22°,则∠EFG= . |
17. 难度:中等 | |
先将化简,然后请你自选一个合理的x值,求原式的值. |
18. 难度:中等 | |
已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E, (1)求证:四边形ADCE为矩形; (2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明. |
19. 难度:中等 | |
南宁市政府为了了解本市市民对首届中国一东盟博览会的总体印象,利用最新引进的“计算机辅助电话访问系统”(简称CATI系统),采取电脑随机抽样的方式,对本市年龄在16~65岁之间的居民,进行了300个电话抽样调查.并根据每个年龄段的抽查人数和该年龄段对博览会总体印象感到满意的人数绘制了图1和图2(部分). 根据图中提供的信息回答下列问题: (1)被抽查的居民中,人数最多的年龄段是______岁; (2)已知被抽查的300人中有83%的人对博览会总体印象感到满意,请你求出21~30岁年龄段的满意人数,并补全图11. (3)比较21~30岁和41~50岁这两个年龄段对博览会总体印象满意率的高低(四舍五入到1%).注:某年龄段的满意率=该年龄段满意人数÷该年龄段被抽查人数×100%. |
20. 难度:中等 | |
阅读材料:为解方程(x2-1)2-5(x2-1)+4=0,我们可以将x2-1看作一个整体,然后设x2-1=y…①, 那么原方程可化为y2-5y+4=0, 解得y1=1,y2=4. 当y=1时,x2-1=1,∴x2=2,∴x=±; 当y=4时,x2-1=4,∴x2=5,∴x=±, 故原方程的解为x1=,x2=,x3=,x4=. 解答问题: (1)上述解题过程,在由原方程得到方程①的过程中,利用______法达到了解方程的目的,体现了转化的数学思想; (2)请利用以上知识解方程x4-x2-6=0. |
21. 难度:中等 | |
去年夏季山洪暴发,几所学校被山体滑坡推倒教学楼,为防止滑坡,经过地质人员勘测,当坡角不超过45°时,可以确保山体不滑坡.某小学紧挨一座山坡,如图所示,已知AF∥BC,斜坡AB长30米,坡角∠ABC=60°.改造后斜坡BE与地面成45°角,求AE至少是多少米?(精确到0.1米) |
22. 难度:中等 | |
在△ABC中,∠C=Rt∠,AC=4cm,BC=5cm,点D在BC上,并且CD=3cm,现有两个动点P、Q分别从点A和点B同时出发,其中点P以1cm/s的速度,沿AC向终点C移动;点Q以1.25cm/s的速度沿BC向终点C移动.过点P作PE∥BC交AD于点E,连接EQ,设动点运动时间为x秒. (1)用含x的代数式表示AE、DE的长度; (2)当点Q在BD(不包括点B、D)上移动时,设△EDQ的面积为y(cm2),求y与x的函数关系式,并写出自变量x的取值范围; (3)当x为何值时,△EDQ为直角三角形? |
23. 难度:中等 | |
如图所示,在平面直角坐标系Oxy中,已知点A(-,0),点C(0,3),点B是x轴上一点(位于点A的右侧),以AB为直径的圆恰好经过点C. (1)求∠ACB的度数; (2)已知抛物线y=ax2+bx+3经过A、B两点,求抛物线的解析式; (3)线段BC上是否存在点D,使△BOD为等腰三角形?若存在,则求出所有符合条件的点D的坐标;若不存在,请说明理由. |