1. 难度:中等 | |
与-3的差为0的数是( ) A.3 B.-3 C. D. |
2. 难度:中等 | |
在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为( ) A.1.94×1010 B.0.194×1010 C.19.4×109 D.1.94×109 |
3. 难度:中等 | |
某班七个合作学习小组人数如下:4、5、5、x、6、7、8,已知这组数据的平均数是6,则这组数据的中位数是( ) A.5 B.5.5 C.6 D.7 |
4. 难度:中等 | |
在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为( ) A. B. C. D. |
5. 难度:中等 | |
如图,在平面直角坐标系中,⊙A经过原点O,并且分别与x轴、y轴交于B、C两点,已知B(8,0),C(0,6),则⊙A的半径为( ) A.3 B.4 C.5 D.8 |
6. 难度:中等 | |
如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为( ) A.11 B.10 C.9 D.8 |
7. 难度:中等 | |
某超市货架上摆放着某品牌红烧牛肉方便面,如图是它们的三视图,则货架上的红烧牛肉方便面至少有( ) A.8 B.9 C.10 D.11 |
8. 难度:中等 | |
如图,将一张边长为3的正方形纸片按虚线裁剪后,恰好围成一个底面是正三角形的棱柱,这个棱柱的侧面积为( ) A. B.9 C. D. |
9. 难度:中等 | |
如图,点O是正六边形的对称中心,如果用一副三角板的角,借助点O(使该角的顶点落在点O处),把这个正六边形的面积n等分,那么n的所有可能取值的个数是( ) A.4 B.5 C.6 D.7 |
10. 难度:中等 | |
如图,已知A、B是反比例函数上的两点,BC∥x轴,交y轴于C,动点P从坐标原点O出发,沿O→A→B→C匀速运动,终点为C,过运动路线上任意一点P作PM⊥x轴于M,PN⊥y轴于N,设四边形OMPN的面积为S,P点运动的时间为t,则S关于t的函数图象大致是( ) A. B. C. D. |
11. 难度:中等 | |
多项式ax2-a与多项式x2-2x+1的公因式是 . |
12. 难度:中等 | |
计算:= . |
13. 难度:中等 | |
如图,边长为1的小正方形网格中,⊙O的圆心在格点上,则∠AED的余弦值是 . |
14. 难度:中等 | |
已知关于x的方程x2-(a+b)x+ab-1=0,x1、x2是此方程的两个实数根,现给出三个结论:①x1≠x2;②x1x2<ab;③.则正确结论的序号是 .(填上你认为正确结论的所有序号) |
15. 难度:中等 | |
如图,在函数的图象上有点P1、P2、P3…、Pn、Pn+1,点P1的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P1、P2、P3…、Pn、Pn+1分别作x轴、y轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S1、S2、S3…、Sn,则S1= ,Sn= .(用含n的代数式表示) |
16. 难度:中等 | |
解不等式组:并写出它的所有的整数解. |
17. 难度:中等 | |
先化简,然后从1、、-1中选取一个你认为合适的数作为a的值代入求值. |
18. 难度:中等 | |
用配方法解关于x的一元二次方程ax2+bx+c=0. |
19. 难度:中等 | |
某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满. (1)求该校的大小寝室每间各住多少人? (2)预测该校今年招收的高一新生中有不少于630名女生将入住寝室80间,问该校有多少种安排住宿的方案? |
20. 难度:中等 | |
为配合我市创建省级文明城市,某校对八年级各班文明行为劝导志愿者人数进行了统计,各班统计人数有6名、5名、4名、3名、2名、1名共计六种情况,并制作如下两幅不完整的统计图. (1)求该年级平均每班有多少文明行为劝导志愿者?并将条形图补充完整; (2)该校决定本周开展主题实践活动,从八年级只有2名文明行为劝导志愿者的班级中任选两名,请用列表或画树状图的方法,求出所选文明行为劝导志愿者有两名来自同一班级的概率. |
21. 难度:中等 | |
如图,点B、C、D都在⊙O上,过点C作AC∥BD交OB延长线于点A,连接CD,且∠CDB=∠OBD=30°,DB=cm. (1)求证:AC是⊙O的切线; (2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π) |
22. 难度:中等 | |
在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M的正西19.5km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A相距km的C处. (1)求该轮船航行的速度(保留精确结果); (2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由. |
23. 难度:中等 | |
将两块全等的三角板如图①摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°. (1)将图①中的△A1B1C顺时针旋转45°得图②,点P1是A1C与AB的交点,点Q是A1B1与BC的交点,求证:CP1=CQ; (2)在图②中,若AP1=2,则CQ等于多少? (3)如图③,在B1C上取一点E,连接BE、P1E,设BC=1,当BE⊥P1B时,求△P1BE面积的最大值. |
24. 难度:中等 | |
如图,已知抛物线y=ax2+bx-2(a≠0)与x轴交于A、B两点,与y轴交于C点,直线BD交抛物线于点D,并且D(2,3),tan∠DBA=. (1)求抛物线的解析式; (2)已知点M为抛物线上一动点,且在第三象限,顺次连接点B、M、C、A,求四边形BMCA面积的最大值; (3)在(2)中四边形BMCA面积最大的条件下,过点M作直线平行于y轴,在这条直线上是否存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆?若存在,求出圆心Q的坐标;若不存在,请说明理由. |