1. 难度:中等 | |
-3的倒数是( ) A.3 B.-3 C. D. |
2. 难度:中等 | |
如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是( ) A.美 B.丽 C.广 D.安 |
3. 难度:中等 | |||||||||||||||
在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:
A.1.65,1.70 B.1.70,1.70 C.1.70,1.65 D.3,4 |
4. 难度:中等 | |
计算(ab)2的结果是( ) A.2ab B.a2b C.a2b2 D.ab2 |
5. 难度:中等 | |
如图,在Rt△ABC中,∠C=90°,AB=2BC,则sinB的值为( ) A. B. C. D.1 |
6. 难度:中等 | |
2012年“国际攀岩比赛”在重庆举行.小丽从家出发开车前去观看,途中发现忘了带门票,于是打电话让妈妈马上从家里送来,同时小丽也往回开,遇到妈妈后聊了一会儿,接着继续开车前往比赛现场.设小丽从家出发后所用时间为t,小丽与比赛现场的距离为S.下面能反映S与t的函数关系的大致图象是( ) A. B. C. D. |
7. 难度:中等 | |
如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠PCA=( ) A.30° B.45° C.60° D.67.5° |
8. 难度:中等 | |
已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,则a的取值范围是( ) A.a>2 B.a<2 C.a<2且a≠l D.a<-2 |
9. 难度:中等 | |
已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是( ) A.20或16 B.20 C.16 D.以上答案均不对 |
10. 难度:中等 | |
如图,三个边长均为2的正方形重叠在一起,O1、O2是其中两个正方形的中心,则阴影部分的面积是( ) A.1 B. C.2 D. |
11. 难度:中等 | |
如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(-6,4),则△AOC的面积为( ) A.12 B.9 C.6 D.4 |
12. 难度:中等 | |
如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接EF.给出下列五个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=.其中正确结论的序号是( ) A.①②③④ B.①②④⑤ C.②③④⑤ D.①③④⑤ |
13. 难度:中等 | |
分解因式:x3-x= . |
14. 难度:中等 | |
如图,圆柱的底面周长为6cm,AC是底面圆的直径,高BC=6cm,点P是每线BC上一点且PC=BC.一只蚂蚁从点A出发沿着圆柱体的表面爬行到点P的最短距离是 . |
15. 难度:中等 | |
在一只不透明的口袋中放人只有颜色不同的白球6个,黑球4个,黄球n个,搅匀后随机从中摸取一个恰好是黄球的概率为,则放入的黄球总数n= . |
16. 难度:中等 | |
对于正数x,规定 ,例如:,,则= . |
17. 难度:中等 | |
计算:. |
18. 难度:中等 | |
先化简,再求值:,其中. |
19. 难度:中等 | |
如图,△ACB和△ECD都是等腰直角三角形,A,C,D三点在同一直线上,连接BD,AE,并延长AE交BD于F. (1)求证:△ACE≌△BCD; (2)直线AE与BD互相垂直吗?请证明你的结论. |
20. 难度:中等 | |
某学校为了改善办学条件,计划购置一批电子白板和一批笔记本电脑,经投标,购买1块电子白板比买3台笔记本电脑多3000元,购买4块电子白板和5台笔记本电脑共需80000元. (1)求购买1块电子白板和一台笔记本电脑各需多少元? (2)根据该校实际情况,需购买电子白板和笔记本电脑的总数为396,要求购买的总费用不超过2700000元,并购买笔记本电脑的台数不超过购买电子白板数量的3倍,该校有哪几种购买方案? (3)上面的哪种购买方案最省钱?按最省钱方案购买需要多少钱? |
21. 难度:中等 | |
吸烟有害健康,为配合“戒烟”运动,某校组织同学们在社区开展了“你支持哪种戒烟方式”的随机问卷调查,并将调查结果绘制成两幅不完整的统计图: 根据统计图解答下列问题: (1)同学们一共调查了多少人? (2)将条形统计图补充完整. (3)若该社区有1万人,请你估计大约有多少人支持“警示戒烟”这种方式? (4)为了让更多的市民增强“戒烟”意识,同学们在社区做了两期“警示戒烟”的宣传.若每期宣传后,市民支持“警示戒烟”的平均增长率为20%,则两期宣传后支持“警示戒烟”的市民约有多少人? |
22. 难度:中等 | |
在一次课题设计活动中,小明对修建一座87m长的水库大坝提出了以下方案;大坝的横截面为等腰梯形,如图,AD∥BC,坝高10m,迎水坡面AB的坡度,老师看后,从力学的角度对此方案提出了建议,小明决定在原方案的基础上,将迎水坡面AB的坡度进行修改,修改后的迎水坡面AE的坡度. (1)求原方案中此大坝迎水坡AB的长(结果保留根号); (2)如果方案修改前后,修建大坝所需土石方总体积不变,在方案修改后,若坝顶沿EC方向拓宽2.7m,求坝底将会沿AD方向加宽多少米? |
23. 难度:中等 | |
如图,正比例函数的图象与反比例函数(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1. (1)求反比例函数的解析式; (2)如果B为反比例函数在第一象限图象上的点,且B点的横坐标为1,在x轴上求一点P,使PA+PB最小.(只需在图中作出点B,P,保留痕迹,不必写出理由) |
24. 难度:中等 | |
如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP. (1)求证:直线CP是⊙O的切线. (2)若BC=2,sin∠BCP=,求点B到AC的距离. (3)在第(2)的条件下,求△ACP的周长. |
25. 难度:中等 | |
如图,在平面直角坐标系中,直线y=x+4与x轴、y轴分别交于A、B两点,抛物线y=-x2+bx+c经过A、B两点,并与x轴交于另一点C(点C点A的右侧),点P是抛物线上一动点. (1)求抛物线的解析式及点C的坐标; (2)若点P在第二象限内,过点P作PD⊥x轴于D,交AB于点E.当点P运动到什么位置时,线段PE最长?此时PE等于多少? (3)如果平行于x轴的动直线l与抛物线交于点Q,与直线AB交于点N,点M为OA的中点,那么是否存在这样的直线l,使得△MON是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由. |