第4章《锐角三角形》中考题集(34):4.3 解直角三角形及其应用(解析版)
一、解答题
|
详细信息
|
1. 难度:中等 |
如图,山顶建有一座铁塔,塔高CD=30m,某人在点A处测得塔底C的仰角为20°,塔顶D的仰角为23°,求此人距CD的水平距离AB.(参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364,sin23°≈0.391,cos23°≈0.921,tan23°≈0.424)
|
|
详细信息
|
3. 难度:中等 |
如图,小山的顶部是一块平地DE,在这块平地上有一高压输电的铁架AE,小山的斜坡BD的坡度i=1:,斜坡BD的长是50米,在山块的坡底B处测得铁架顶端A的仰角为45°,在山坡坡顶D处测得铁架顶端A的仰角为60°,求铁架AE的高度.(答案可带根号)
|
|
详细信息
|
5. 难度:中等 |
如图,山脚下有一棵树AB,小华从点B沿山坡向上走50米到达点D,用高为1.5米的测角仪CD测得树顶的仰角为10°,已知山坡的坡角为15°,求树AB的高.(精确到0.1米) (已知sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin15°≈0.26,cos15°≈0.97,tan15°≈0.27.)
|
|
详细信息
|
6. 难度:中等 |
为了测得学校旗杆的高度,小明先站在地面的A点测得旗杆最高点C的仰角为27°(点A距旗杆的距离大于50m),然后他向旗杆的方向向前进了50m,此时测得点C的仰角为40度.又已知小明的眼睛离地面1.6m,请你画出小明测量的示意图,并帮小明计算学校旗杆的高度.(精确到0.1m)
|
|
详细信息
|
7. 难度:中等 |
如图,某中学九年级一班数学课外活动小组利用周末开展课外实践活动,他们要在某公园人工湖旁的小山AB上,测量湖中两个小岛C,D间的距离.从山顶A处测得湖中小岛C的俯角为60°,测得湖中小岛D的俯角为45度.已知小山AB的高为180米,求小岛C,D间的距离.(计算过程和结果均不取近似值)
|
|
详细信息
|
9. 难度:中等 |
又到了一年中的春游季节,某班学生利用周末到白塔山去参观“晏阳初博物馆”.下面是两位同学的一段对话: 甲:我站在此处看塔顶仰角为60°; 乙:我站在此处看塔顶仰角为30°; 甲:我们的身高都是1.5m; 乙:我们相距20m. 请你根据两位同学的对话,计算白塔的高度.(精确到1米)
|
|
详细信息
|
10. 难度:中等 |
如图,小明站在A处放风筝,风筝飞到C处时的线长为20米,这时测得∠CBD=60°,若牵引底端B离地面1.5米,求此时风筝离地面高度.(计算结果精确到0.1米,≈1.732)
|
|
详细信息
|
11. 难度:中等 |
有一座塔,在地面上A点测得其顶点C的仰角为30度.向塔前进50m到B点,又测得C的仰角为60度.求塔的高度.(结果可保留根号)
|
|
详细信息
|
12. 难度:中等 |
如图,为了对我市城区省级文物保护对象--高AC约42米的天然塔(清乾隆五十七年重修)进行保护性维修,工人要在塔顶A和塔底所在地面上的B处之间拉一根铁丝,在BC上的点D处测得塔顶的仰角α为43°(测倾器DE高1.6米,A,E,B三点在同一条直线上).求∠BAC的度数和铁丝AB的长.(接头部分的长度忽略不计,结果精确到0.1米.sin43°≈0.68,tan43°≈0.93)
|
|
详细信息
|
13. 难度:中等 |
如图,AB是一棵古树,某校初四(1)班数学兴趣小组的同学想利用所学知识测出这棵古树的高,过程如下:在古树同侧的水平地面上,分别选取了C、D两点(C、D两点与古树在同一直线上),用测角仪在C处测得古树顶端A的仰角α=60°,在D处测得古树顶端A的仰角β=30°,又测得C、D两点相距14米.已知测角仪高为1.5米,请你根据他们所测得的数据求出古树AB的高.(精确到0.1米,≈1.732)
|
|
详细信息
|
15. 难度:中等 |
如图,在某建筑物AC上,挂着“多彩贵州”的宣传条幅BC,小明站在点F处,看条幅顶端B,测的仰角为30°,再往条幅方向前行20米到达点E处,看到条幅顶端B,测的仰角为60°,求宣传条幅BC的长.(小明的身高不计,结果精确到0.1米)
|
|
详细信息
|
16. 难度:中等 |
某数学兴趣小组在学习了《锐角三角函数》以后,开展测量物体高度的实践活动,他们在河边的一点A测得河对岸小山顶上一座铁塔的塔顶C的仰角为66°、塔底B的仰角为60°,已知铁塔的高度BC为20m(如图),你能根据以上数据求出小山的高BD吗?若不能,请说明理由;若能,请求出小山的高BD.(精确到0.1m)
|
|
详细信息
|
17. 难度:中等 |
已知:如图,有一飞行中的热气球,在A处时的热气球的探测器显示,从热气球看正前方一栋高楼顶部的仰角为45°,看这栋高楼底部的俯角为60°,热气球离地面的高度为150米,为了安全,避免热气球撞上高楼,请问热气球此时至少应再上升多少米? (注:≈1.732,结果精确到1米)
|
|
详细信息
|
18. 难度:中等 |
如图,小明想测量塔BC的高度.他在楼底A处测得塔顶B的仰角为60°;爬到楼顶D处测得大楼AD的高度为18米,同时测得塔顶B的仰角为30°,求塔BC的高度.
|
|
详细信息
|
19. 难度:中等 |
如图,小山上有一棵树.现有测角仪和皮尺两种测量工具,请你设计一种测量方案,在山脚水平地面上测出小树顶端A到水平地面的距离AB. 要求: (1)画出测量示意图; (2)写出测量步骤(测量数据用字母表示); (3)根据(2)中的数据计算AB.
|
|
详细信息
|
20. 难度:中等 |
兰州市城市规划期间,欲拆除黄河岸边的一根电线杆AB(如图),已知距电线杆AB水平距离14米处是河岸,即BD=14米,该河岸的坡面CD的坡角∠CDF的正切值为2,岸高CF为2米,在坡顶C处测得杆顶A的仰角为30°,D、E之间是宽2米的人行道,请你通过计算说明在拆除电线杆AB时,为确保安全,是否将此人行道封上?(在地面上以点B为圆心,以AB长为半径的圆形区域为危险区域)
|
|
详细信息
|
21. 难度:中等 |
如图,AB和CD是同一地面上的两座相距36米的楼房,在楼AB的楼顶A点测得楼CD的楼顶C的仰角为45°,楼底D的俯角为30度.求楼CD的高(结果保留根号).
|
|
详细信息
|
22. 难度:中等 |
如图,张聪同学在学校某建筑物C点处测得旗杆顶部A的仰角为30°,旗杆底部B点的俯角为45°,若旗杆底部B点到该建筑物的水平距离BE=6米,旗杆台阶高1米,求旗杆顶部A离地面的高度.(结果保留根号)
|
|
详细信息
|
23. 难度:中等 |
如图,一枚运载火箭从地面O处发射,当火箭到达A点时,从地面C处的雷达站测得AC的距离是6km,仰角是43度.1s后,火箭到达B点,此时测得BC的距离是6.13km,仰角为45.54°,解答下列问题: (1)火箭到达B点时距离发射点有多远?(精确到0.01km) (2)火箭从A点到B点的平均速度是多少?(精确到0.1km/s)
|
|
详细信息
|
24. 难度:中等 |
如图,甲、乙两栋高楼的水平距离BD为90米,从甲楼顶部C点测得乙楼顶部A点的仰角α为30°,测得乙楼底部B点的俯角β为60°,求甲、乙两栋高楼各有多高?(计算过程和结果都不取近似值)
|
|
详细信息
|
25. 难度:中等 |
如图,线段AB,CD分别表示甲、乙两建筑物的高,AB⊥BC,CD⊥BC,从A点测得D点的俯角α为30°,测得C点的俯角β为60°,已知乙建筑物高CD=40米.试求甲建筑物高AB.
|
|
详细信息
|
26. 难度:中等 |
如图所示,某学校拟建两幢平行的教学楼,现设计两楼相距30米,从A点看C点,仰角为5°;从A点看D点,俯角为30°,解决下列问题: (1)求两幢楼分别高多少米?(结果精确到1米) (2)若冬日上午9:00太阳光的入射角最低为30°(光线与水平线的夹角),问一号楼的光照是否会有影响?请说明理由,若有,则两楼间距离应至少相距多少米时才会消除这种影响?(结果精确到1米) (参考数据:tan5°≈0.0875,tan30°≈0.5774,cos30°≈1.732)
|
|
详细信息
|
27. 难度:中等 |
如图,已知某小区的两幢10层住宅楼间的距离为AC=30 m,由地面向上依次为第1层、第2层、…、第10层,每层高度为3 m.假设某一时刻甲楼在乙楼侧面的影长EC=h,太阳光线与水平线的夹角为α. (1)用含α的式子表示h(不必指出α的取值范围); (2)当α=30°时,甲楼楼顶B点的影子落在乙楼的第几层?若α每小时增加15°,从此时起几小时后甲楼的影子刚好不影响乙楼采光?
|
|
详细信息
|
28. 难度:中等 |
会堂里竖直挂一条幅AB,小刚从与B成水平的C点观察,视角∠C=30°,当他沿CB方向前进2米到达到D时,视角∠ADB=45°,求条幅AB的长度.
|
|
详细信息
|
29. 难度:中等 |
小刘同学为了测量雷州市三元塔的高度,如图,她先在A处测得塔顶C的仰角为32°,再向塔的方向直行35米到达B处,又测得塔顶C的仰角为60°,请你帮助小刘计算出三元塔的高度.(小刘的身高忽略不计,结果精确到1米)
|