1. 难度:中等 | |
袋中共有5个大小相同的红球、白球,任意摸出一球为红球的概率是. (1)袋中红球个数为______、白球个数为______; (2)任意摸出两个球均为红球的概率是______. |
2. 难度:中等 | |
小刚想给小东打电话,但忘了电话号码中的一位数字,只记得号码是284□9456(□表示忘记的数字). (1)若小刚从0至9的自然数中随机选取一个数放在□位置,则他拨对小东电话号码的概率是______. (2)若□位置的数字是不等式组的整数解,求□可能表示的数字. |
3. 难度:中等 | |||||||||||||||||||
某电视台的娱乐节目《周末大放送》有这样的翻奖牌游戏,数字的背面写有祝福语或奖金数,游戏规则是:每次翻动正面一个数字,看看反面对应的内容,就可知是得奖还是得到温馨祝福.计算: 正面:
(2)“翻到奖金”的概率; (3)“翻不到奖金”的概率. |
4. 难度:中等 | |
学校门口经常有小贩搞摸奖活动.某小贩在一只黑色的口袋里装有只有颜色不同的50只小球,其中红球1只,黄球2只,绿球10只,其余为白球.搅拌均匀后,每2元摸1个球.奖品的情况标注在球上(从左到右分别为红、黄、绿、白球)(如图) (1)如果花2元摸1个球,那么摸不到奖的概率是______; (2)如果花4元同时摸2个球,那么获得10元奖品的概率是______. |
5. 难度:中等 | |
口袋里有红、绿、黄三种颜色的球,除颜色外其余都相同.其中有红球4个,绿球5个,任意摸出1个绿球的概率是.求:(1)口袋里黄球的个数;(2)任意摸出1个红球的概率. |
6. 难度:中等 | |
一张圆桌旁有四个座位,A先坐在如图所示的座位上,B、C、D三人随机坐到其他三个座位上,求A与B不相邻而坐的概率. |
7. 难度:中等 | |
某小商店开展购物摸奖活动,声明:购物时每消费2元可获得一次摸奖机会,每次摸奖时,购物者从标有数字1,2,3,4,5的5个小球(小球之间只有号码不同)中摸出一球,若号码是2就中奖,奖品为一张精美图片. (1)摸奖一次时,得到一张精美图片的概率是多少?得不到精美图片的概率是多少? (2)一次,小聪购买了10元钱的物品,前4次摸奖都没有摸中,他想:“第5次摸奖我一定能摸中”,你同意他的想法吗?说说你的想法. |
8. 难度:中等 | |
袋子里装有红、黄、蓝三种小球,其形状、大小、质量、质地等完全相同,每种颜色的小球各5个,且分别标有数字1,2,3,4,5.现从中摸出一球: (1)摸出的球是蓝色球的概率为多少? (2)摸出的球是红色1号球的概率为多少? (3)摸出的球是5号球的概率为多少? |
9. 难度:中等 | |||||||||||||||||||
某商场搞“真情回报社会”的幸运抽奖活动,最高奖金为每份l万元,平均奖金180元.下面是奖金的分配表:
|
10. 难度:中等 | |
如图所示,转盘被等分成八个扇形,并在上面依次标有数字1,2,3,4,5,6,7,8. (1)自由转动转盘,当它停止转动时,指针指向的数正好能被8整除的概率是多少? (2)请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向的区域的概率为. (注:指针指在边缘处,要重新转,直至指到非边缘处). |
11. 难度:中等 | |
小明家里的阳台地面,水平铺设着仅黑白颜色不同的18块方砖(如图),他从房间里向阳台抛小皮球,小皮球最终随机停留在某块方砖上. (1)求小皮球分别停留在黑色方砖与白色方砖上的概率; (2)上述哪个概率较大?要使这两个概率相等,应改变第几行第几列的哪块方砖颜色?怎样改变? |
12. 难度:中等 | |
如图,转盘被等分成六个扇形区域,并在上面依次写上数字:1、2、3、4、5、6.转盘指针的位置固定,转动转盘后任其自由停止. (1)当停止转动时,指针指向奇数区域的概率是多少? (2)请你用这个转盘设计一个游戏(六等分扇形不变),使自由转动的转盘停止时,指针指向的区域的概率为,并说明你的设计理由.(设计方案可用图示表示,也可以用文字表述) |
13. 难度:中等 | |||||||||||
某商场进行有奖促销活动.活动规则:购买500元商品就可以获得一次转转盘的机会,(转盘分为5个扇形区域,分别是特等奖、一等奖、二等奖、三等奖、不获奖),转盘指针停在哪个获奖区域就可以获得该区域相应等级奖品一件.商场工作人员在制作转盘时,将获奖扇形区域圆心角分配如下表:
(2)如果不用转盘,请设计一种等效实验方案. (要求写清楚替代工具和实验规则) |
14. 难度:中等 | |
如图所示,转盘被等分成六个扇形,并在上面依次写上数字1,2,3,4,5,6; (1)若自由转动转盘,当它停止转动时,指针指向奇数区的概率是多少? (2)请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向的区域的概率为. |
15. 难度:中等 | |
在一个不透明的盒子里,装有三个分别写有数字-1,0,1的乒乓球(形状,大小一样),先从盒子里随即取出一个乒乓球,记下数字后放回盒子,摇匀后再随即取出一个乒乓球,记下数字. (1)请用树状图或列表的方法求两次取出乒乓球上数字相同的概率; (2)求两次取出乒乓球上数字之积等于0的概率. |
16. 难度:中等 | |
中央电视台举办的第14届“蓝色经典•天之蓝”杯青年歌手大奖赛,由部队文工团的A(海政)、B(空政)、C(武警)组成种子队,由部队文工团的D(解放军)和地方文工团的E(云南)、F(新疆)组成非种子队.现从种子队A、B、C与非种子队D、E、F中各抽取一个队进行首场比赛. (1)请用适当方式写出首场比赛出场的两个队的所有可能情况(用代码A、B、C、D、E、F表示); (2)求首场比赛出场的两个队都是部队文工团的概率P? |
17. 难度:中等 | |
在“传箴言”活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行了统计,并制成了如下两幅不完整的统计图: (1)求该班团员在这一个月内所发箴言的平均条数是多少?并将该条形统计图补充完整; (2)如果发了3条箴的同学中有两位男同学,发了4条箴言的同学中有三位女同学.现要从发了3条箴和4条箴言的同学中分别选出一位参加该校团委组织的“箴言”活动总结会,请你用列表法或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率. |
18. 难度:中等 | |
小颖为学校联欢会设计了一个“配紫色”的游戏:下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,游戏者同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色. (1)利用树状图或列表的方法表示出游戏所有可能出现的结果; (2)游戏者获胜的概率是多少? |
19. 难度:中等 | |
端午节吃粽子是中华民族的传统习俗,五月初五早晨,小丽的妈妈用不透明的袋子装着一些粽子(粽子除内部馅料不同外,其他一切均相同),其中香肠馅粽子两个,还有一些绿豆馅粽子,现小丽从中任意拿出一个是香肠馅粽子的概率为. (1)求袋子中绿豆馅粽子的个数; (2)小丽第一次任意拿出一个粽子(不放回),第二次再拿出一个粽子,请你用树形图或列表法,求小丽两次拿到的都是绿豆馅粽子的概率. |
20. 难度:中等 | |
阅读对话,解答问题: (1)分别用a、b表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出(a,b)的所有取值; (2)求在(a,b)中使关于x的一元二次方程x2-ax+2b=0有实数根的概率. |
21. 难度:中等 | |
某班举行演讲革命故事的比赛中有一个抽奖活动.活动规则是:进入最后决赛的甲、乙两位同学,每人只有一次抽奖机会,在如图所示的翻奖牌正面的4个数字中任选一个数字,选中后可以得到该数字后面的奖品,第一人选中的数字,第二人就不能再选择该数字. (1)求第一位抽奖的同学抽中文具与计算器的概率分别是多少? (2)有同学认为,如果.甲先抽,那么他抽到海宝的概率会大些,你同意这种说法吗?并用列表格或画树状图的方式加以说明. |
22. 难度:中等 | |
在一个不透明的袋子中装有白色、黄色和蓝色三种颜色的小球,这些球除颜色外都相同,其中白球有2个,蓝球有1个.现从中任意摸出一个小球是白球的概率是. (1)袋子中黄色小球有______个; (2)如果第一次任意摸出一个小球(不放回),第二次再摸出一个小球,请用画树状图或列表格的方法求两次都摸出白球的概率. |
23. 难度:中等 | |
如图,A、B两个转盘分别被平均分成三个、四个扇形,分别转动A盘、B盘各一次.转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止.请用列表或画树状图的方法,求两个转盘停止后指针所指区域内的数字之和小于6的概率. |
24. 难度:中等 | |
甲、乙两人玩“石头、剪子、布”游戏,游戏规则为:双方都做出“石头”、“剪子”、“布”三种手势(如图)中的一种,规定“石头”胜“剪子”,“剪子”胜“布”,“布”胜“石头”,手势相同,不分胜负.若甲、乙两人都随意做出三种手势中的一种,则两人一次性分出胜负的概率是多少?请用列表或画树状图的方法加以说明. |
25. 难度:中等 | |
小王将一黑一白两双相同号码的袜子一只一只地扔进抽屉里,当他随意从抽屉里拿出两只袜子时,恰好成双与不成双的机会是多少?请你用树形图求解. |
26. 难度:中等 | |
某联欢会上有一个有奖游戏,规则如下:有5张纸牌,背面都是喜羊羊头像,正面有2张是笑脸,其余3张是哭脸.现将5张纸牌洗匀后背面朝上摆放到桌上,若翻到的纸牌中有笑脸就有奖,没有笑脸就没有奖. (1)小芳获得一次翻牌机会,她从中随机翻开一张纸牌.小芳得奖的概率是______. (2)小明获得两次翻牌机会,他同时翻开两张纸牌.小明认为这样得奖的概率是小芳的两倍,你赞同他的观点吗?请用树形图或列表法进行分析说明. |
27. 难度:中等 | |
现有分别标有数字-1,1,2的3个质地和大小完全相同的小球.若3个小球都装在一个不透明的口袋中,从中随机摸出一个小球后不放回,其标号作为一次函数y=kx+b的系数k.再随机摸出一个,其标号作为一次函数y=kx+b的系数b. (1)利用树形图或列表法(只选一种),表示一次函数y=kx+b可能出现的所有结果,并写出所有等可能结果; (2)求出一次函数y=kx+b的图象不经过第四象限的概率. |
28. 难度:中等 | |
小伟和小欣玩一种抽卡片游戏:将背面完全相同,正面分别写有:1,2,3,4的四张卡片混合后,小伟从中随机抽取一张.记下数字后放回,混合后小欣再随机抽取一张,记下数字.如果所记的两数字之和大于4,则小伟胜;如果所记的两数字之和不大于4,则小欣胜. (1)请用列表或画树形图的方法.分别求出小伟,小欣获胜的概率; (2)若小伟抽取的卡片数字是1,问两人谁获胜的可能性大?为什么? |
29. 难度:中等 | |
把4个完全相同的乒乓球标上数字2,3,4,5,然后放到一个不透明的口袋中,第一次任意摸出一个球(不放回),第二次再任意摸出一个球. (1)请补充完整下面的树形图: (2)根据树形图可知,两次摸出的球所标数字之和是7的概率的多少? |
30. 难度:中等 | |
小刚参观上海世博会,由于仅有一天的时间,他上午从A-中国馆、B-日本馆、C-美国馆中任意选择一处参观,下午从D-韩国馆、E-英国馆、F-德国馆中任意选择一处参观. (1)请用画树状图或列表的方法,分析并写出小刚所有可能的参观方式(用字母表示即可); (2)求小刚上午和下午恰好都参观亚洲国家展馆的概率. |