1. 难度:中等 | |
若三角形中两边的垂直平分线的交点正好落在第三条边上,则这个三角形是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形 |
2. 难度:中等 | |
下图中,每张方格纸上都画有一个圆,只用不带刻度的直尺就能确定圆心位置的是( ) A. B. C. D. |
3. 难度:中等 | |
下列命题中,正确的是( ) ①顶点在圆周上的角是圆周角;②圆周角的度数等于圆心角度数的一半;③90°的圆周角所对的弦是直径;④不在同一条直线上的三个点确定一个圆;⑤同圆或等圆中,同弧所对的圆周角相等. A.①②③ B.③④⑤ C.①②⑤ D.②④⑤ |
4. 难度:中等 | |
小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是( ) A.第①块 B.第②块 C.第③块 D.第④块 |
5. 难度:中等 | |
下列命题错误的是( ) A.经过三个点一定可以作圆 B.三角形的外心到三角形各顶点的距离相等 C.同圆或等圆中,相等的圆心角所对的弧相等 D.经过切点且垂直于切线的直线必经过圆心 |
6. 难度:中等 | |
如图所示.△ABC内接于⊙O,若∠OAB=28°,则∠C的大小是( ) A.56° B.62° C.28° D.32° |
7. 难度:中等 | |
如图所示,A、B、C分别表示三个村庄,AB=1000米,BC=600米,AC=800米,在社会主义新农村建设中,为了丰富群众生活,拟建一个文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P的位置应在( ) A.AB中点 B.BC中点 C.AC中点 D.∠C的平分线与AB的交点 |
8. 难度:中等 | |
如图,⊙O是等边三角形ABC的外接圆,⊙O的半径为2,则等边三角形ABC的边长为( ) A. B. C. D. |
9. 难度:中等 | |
如图,⊙O是等边△ABC的外接圆,P是⊙O上一点,则∠CPB等于( ) A.30° B.45° C.60° D.90° |
10. 难度:中等 | |
如图,⊙O是△ABC的外接圆,连接OA、OC,⊙O的半径R=2,sinB=,则弦AC的长为( ) A.3 B. C. D. |
11. 难度:中等 | |
三角形的外心是( ) A.三条中线的交点 B.三条边的中垂线的交点 C.三条高的交点 D.三条角平分线的交点 |
12. 难度:中等 | |
下列说法:①过三点可以作圆. ②等弧所对的圆心角度数相等. ③在⊙O内经过一点P的所有弦中,以与OP垂直的弦最短. ④三角形的外心到三角形的三个顶点的距离相等.其中正确的有( ) A.1个 B.2个 C.3个 D.4个 |
13. 难度:中等 | |
若一个三角形的外心在这个三角形的最长边上,那么这个三角形是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定 |
14. 难度:中等 | |
如图,四边形ABCD中,AB=AC=AD,若∠CAD=76°,则∠CBD= 度. |
15. 难度:中等 | |
如图,直角坐标系中一条圆弧经过网格点A,B,C,其中B点坐标为(4,4),则该圆弧所在圆的圆心坐标为 . |
16. 难度:中等 | |
如图,网格的小正方形的边长均为1,小正方形的顶点叫做格点.△ABC的三个顶点都在格点上,那么△ABC的外接圆半径是 . |
17. 难度:中等 | |
如图,⊙O是△ABC的外接圆,⊙O的半径R=2,sinB=,则弦AC的长为 . |
18. 难度:中等 | |
已知直角三角形的两条直角边长分别为6cm和8cm,则这个直角三角形的外接圆的半径为 cm. |
19. 难度:中等 | |
若三角形的外心在它的一条边上,那么这个三角形是 . |
20. 难度:中等 | |
小芳的衣服被一根铁钉划了一个呈直角三角形的洞,只知道该三角形有两边长分别为1cm和2cm,若用同色圆形布将此洞全部覆盖,那么这个圆布的直径最小应等于 . |
21. 难度:中等 | |
如图所示,△ABC是⊙O的内接三角形,AD⊥BC于D点,且AC=5,DC=3,AB=,则⊙O的直径等于 . |
22. 难度:中等 | |
如图,AB是⊙O的直径,CB是弦,OD⊥CB于E,交于D,连接AC ①请写出两个不同类型的正确结论. ②若CB=16,ED=4,求⊙O的半径. |
23. 难度:中等 | |
如图所示,破残的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D.已知:AB=24cm,CD=8cm. (1)求作此残片所在的圆(不写作法,保留作图痕迹); (2)求(1)中所作圆的半径. |
24. 难度:中等 | |
如图,破残的圆形轮片上,弦AB的垂直平分线交AB于C,交弦AB于D, (1)求作此残片所在的圆的圆心(不写作法,保留作图痕迹); (2)若AB=8cm,CD=2cm,求(1)中所作圆的半径. |
25. 难度:中等 | |
(1)如图1,圆内接△ABC中,AB=BC=CA,OD、OE为⊙O的半径,OD⊥BC于点F,OE⊥AC于点G, 求证:阴影部分四边形OFCG的面积是△ABC的面积的. (2)如图2,若∠DOE保持120°角度不变, 求证:当∠DOE绕着O点旋转时,由两条半径和△ABC的两条边围成的图形(图中阴影部分)面积始终是△ABC的面积的. |
26. 难度:中等 | |
课堂上,老师将图①中△AOB绕O点逆时针旋转,在旋转中发现图形的形状和大小不变,但位置发生了变化.当△AOB旋转90°时,得到∠A1OB1.已知A(4,2),B(3,0). (1)△A1OB1的面积是______;A1点的坐标为(______);B1点的坐标为(______); (2)课后,小玲和小惠对该问题继续进行探究,将图②中△AOB绕AO的中点C(2,1)逆时针旋转90°得到△A′O′B′,设O′B′交OA于D,O′A′交x轴于E.此时A′,O′和B′的坐标分别为(1,3),(3,-1)和(3,2),且O′B′经过B点.在刚才的旋转过程中,小玲和小惠发现旋转中的三角形与△AOB重叠部分的面积不断变小,旋转到90°时重叠部分的面积(即四边形CEBD的面积)最小,求四边形CEBD的面积; (3)在(2)的条件下,△AOB外接圆的半径等于______. |
27. 难度:中等 | |
我们将能完全覆盖某平面图形的最小圆称为该平面图形的最小覆盖圆.例如线段AB的最小覆盖圆就是以线段AB为直径的圆. (1)请分别作出图1中两个三角形的最小覆盖圆;(要求用尺规作图,保留作图痕迹,不写作法) (2)探究三角形的最小覆盖圆有何规律?请写出你所得到的结论;(不要求证明) (3)某地有四个村庄E,F,G,H(其位置如图2所示),现拟建一个电视信号中转站,为了使这四个村庄的居民都能接收到电视信号,且使中转站所需发射功率最小(距离越小,所需功率越小),此中转站应建在何处?请说明理由. |
28. 难度:中等 | |
如图,△ABC是⊙O的内接三角形,AC=BC,D为⊙O中上一点,延长DA至点E,使CE=CD. (1)求证:AE=BD; (2)若AC⊥BC,求证:AD+BD=CD. |