1. 难度:中等 | |
在数学课堂上,老师讲解“相似三角形”之后,接着出了一道题目让同学练习,题目是:“如图,四边形ABCD是平行四边形,E是BA延长线上一点,CE与AD相交于F.请写出与△EBC相似的三角形,并加以证明.” 聪聪看后,迅速写出了下面解答: “与△EBC相似的只有△EAF.证明如下:∵四边形ABCD是平行四边形,∴AD∥BC.∴△EBC∽△EAF.” 你对聪聪的解答有何意见?为什么? |
2. 难度:中等 | |
如图,在△ABC和△DEF中,∠A=∠D=90°,AB=DE=3,AC=2DF=4. (1)判断这两个三角形是否相似并说明为什么? (2)能否分别过A,D在这两个三角形中各作一条辅助线,使△ABC分割成的两个三角形与△DEF分割成的两个三角形分别对应相似?证明你的结论. |
3. 难度:中等 | |
如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问: (1)经过多少时间,△AMN的面积等于矩形ABCD面积的? (2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由. |
4. 难度:中等 | |
如图,已知矩形ABCD,AB=,BC=3,在BC上取两点E,F(E在F左边),以EF为边作等边三角形PEF,使顶点P在AD上,PE,PF分别交AC于点G,H. (1)求△PEF的边长; (2)在不添加辅助线的情况下,当F与C不重合时,从图中找出一对相似三角形,并说明理由; (3)若△PEF的边EF在线段BC上移动.试猜想:PH与BE有何数量关系并证明你猜想的结论. |
5. 难度:中等 | |
如图⊙O的内接△ABC中,外角∠ACF的角平分线与⊙O相交于D点,DP⊥AC,垂足为P,DH⊥BF,垂足为H.问: (1)∠PDC与∠HDC是否相等,为什么? (2)图中有哪几组相等的线段? (3)当△ABC满足什么条件时,△CPD∽△CBA,为什么? |
6. 难度:中等 | |
如图,已知:△ABC的外角∠CAG=120°,∠CAG的平分线AD与BC的延长线相交于点D,延长DA与.△ABC的外接圆交于点F,连接FB、FC,FC与AB相交于点E. (1)写出图中除△EFB∽△EAC、△EAF∽△ECB以外的4对相似三角形; (2)判断△FBC的形状,并说明理由. |
7. 难度:中等 | |
如图,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交边BC于点E,连接BD. (1)根据题设条件,请你找出图中各对相似三角形; (2)请选择其中的一对相似三角形加以证明. |
8. 难度:中等 | |
本题为选项做题,从甲、乙两题中选做一题即可,如果两题都做,只以甲题计分. 甲:直线l:y=(m-3)x+n-2(m,n为常数)的图象如图1所示,化简:|m-n|-; 乙:已知:如图2,在边长为a的正方形ABCD中,M是边AD的中点,能否在边AB上找到点N(不含A、B),使得△MAN相似?若能,请给出证明;若不能,请说明理由. |
9. 难度:中等 | |
已知:如图,Rt△ABC中,∠BAC=90°,D是AC上一点,∠ABD=∠C,直线EF过点D,与BA的延长线相交于F,且EF⊥BC,垂足为E. (1)写出图中所有与△ABD相似的三角形; (2)探索:设,是否存在这样的t值,使得△ADF∽△EDB?说明理由. |
10. 难度:中等 | |
已知:如图,在△ABC中,点D、E分别在边AB、AC上,连接DE并延长交BC的延长线于点F,连接DC、BE.若∠BDE+∠BCE=180度. (1)写出图中三对相似三角形(注意:不得添加字母和线); (2)请在你所找出的相似三角形中选取一对,说明它们相似的理由. |
11. 难度:中等 | |
已知:在⊙O中,CD平分∠ACB,弦AB、CD相交于点E,连接AD、BD. (1)写出图中3对相似的三角形(不必证明); (2)找出图中相等的线段,并说出理由. |
12. 难度:中等 | |
已知∠MON=90°,等边三角形ABC的一个顶点A是射线OM上的一定点,顶点B与点O重合,顶点C在∠MON内部. (1)当顶点B在射线ON上移动到B1时,连接AB1,请在∠MON内部作出以AB1为一边的等边三角形AB1C1(保留作图痕迹,不写作法和证明); (2)设AB1与OC交于点Q,AC的延长线与B1C1交于点D.求证:△ACQ∽△AB1D; (3)连接CC1,试猜想∠ACC1为多少度?并证明你的猜想. |