1. 难度:中等 | |
我们容易发现:反比例函数的图象是一个中心对称图形.你可以利用这一结论解决问题.如图,在同一直角坐标系中,正比例函数的图象可以看作是:将x轴所在的直线绕着原点O逆时针旋转α度角后的图形.若它与反比例函数的图象分别交于第一、三象限的点B,D,已知点A(-m,O)、C(m,0). (1)直接判断并填写:不论α取何值,四边形ABCD的形状一定是______; (2)①当点B为(p,1)时,四边形ABCD是矩形,试求p,α,和m的值; ②观察猜想:对①中的m值,能使四边形ABCD为矩形的点B共有几个?(不必说理) (3)试探究:四边形ABCD能不能是菱形?若能,直接写出B点的坐标,若不能,说明理由. |
2. 难度:中等 | |
如图,直角梯形ABCD中,AD∥BC,∠BCD=90°,且CD=2AD,tan∠ABC=2,过点D作DE∥AB,交∠BCD的平分线于点E,连接BE. (1)求证:BC=CD; (2)将△BCE绕点C,顺时针旋转90°得到△DCG,连接EG.求证:CD垂直平分EG; (3)延长BE交CD于点P.求证:P是CD的中点. |
3. 难度:中等 | |
如图,AB是半圆O的直径,C为半圆上一点,E是BC的中点,AE交BC于点D,DF⊥AB于F,F为垂足,连接CF. (1)判断△CDF的形状,并证明你的结论; (2)若AC=8,cos∠CAB=,求线段BC和CD的长. |
4. 难度:中等 | |
已知:如图,四边形ABCD中,∠C=90°,∠ABD=∠CBD,AB=CB,P是BD上一点,PE⊥BC,PF⊥CD,垂足分别为E、F. (1)求证:PA=EF; (2)若BD=10,P是BD的中点,sin∠BAP=,求四边形PECF的面积. |
5. 难度:中等 | |
已知,△ABC中,∠B=90°,∠BAD=∠ACB,AB=2,BD=1,过点D作DM⊥AD交AC于点M,DM的延长线与过点C的垂线交于点P. (1)求sin∠ACB的值; (2)求MC的长; (3)若点Q以每秒1个单位的速度由点C向点P运动,是否存在某一时刻t,使四边形ADQP的面积等于四边形ABCQ的面积;若存在,求出t的值;若不存在,请说明理由. |
6. 难度:中等 | |
请阅读下列材料: 问题:如图1,在菱形ABCD和菱形BEFG中,点A,B,E在同一条直线上,P是线段DF的中点,连接PG,PC.若∠ABC=∠BEF=60°,探究PG与PC的位置关系及的值. 小聪同学的思路是:延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题: (1)写出上面问题中线段PG与PC的位置关系及的值; (2)将图1中的菱形BEFG绕点B顺时针旋转,使菱形BEFG的对角线BF恰好与菱形ABCD的边AB在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明; (3)若图1中∠ABC=∠BEF=2α(0°<α<90°),将菱形BEFG绕点B顺时针旋转任意角度,原问题中的其他条件不变,请你直接写出的值(用含α的式子表示). |
7. 难度:中等 | |
如图,⊙O的半径为2,直径CD经过弦AB的中点G,若的长等于圆周长的. (1)填空:cos∠ACB=______ |
8. 难度:中等 | |
“五一”节,小雯和同学一起到游乐场玩大型摩天轮,摩天轮的半径为20m,匀速转动一周需要12min,小雯所坐最底部的车厢(离地面0.5m). (1)经过2min后小雯到达点Q,如图所示,此时他离地面的高度是多少? (2)在摩天轮滚动的过程中,小雯将有多长时间连续保持在离地面不低于30.5m的空中? |
9. 难度:中等 | |
如图,已知⊙O的半径为2,以⊙O的弦AB为直径作⊙M,点C是⊙O优弧上的一个动点(不与点A、点B重合).连接AC、BC,分别与⊙M相交于点D、点E,连接DE.若AB=2. (1)求∠C的度数; (2)求DE的长; (3)如果记tan∠ABC=y,=x(0<x<3),那么在点C的运动过程中,试用含x的代数式表示y. |
10. 难度:中等 | |
如图,AB是⊙O的直径,弦CD⊥AB与点E,点P在⊙O上,∠1=∠C, (1)求证:CB∥PD; (2)若BC=3,sin∠P=,求⊙O的直径. |
11. 难度:中等 | |
已知:如图,在半径为4的⊙O中,AB、CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC.连接DE,DE=. (1)求EM的长; (2)求sin∠EOB的值. |
12. 难度:中等 | |
如图,已知AB是⊙O的直径,点C,D在⊙O上,且AB=5,BC=3. (1)求sin∠BAC的值; (2)如果OE⊥AC,垂足为E,求OE的长; (3)求tan∠ADC的值.(结果保留根号) |
13. 难度:中等 | |
如图,已知AB是⊙O的弦,半径OA=2cm,∠AOB=120°. (1)求tan∠OAB的值; (2)计算S△AOB; (3)⊙O上一动点P从A点出发,沿逆时针方向运动,当S△POA=S△AOB时,求P点所经过的弧长.(不考虑点P与点B重合的情形) |
14. 难度:中等 | |
如图,⊙O的半径等于1,弦AB和半径OC互相平分于点M.求扇形OACB的面积(结果保留π). |
15. 难度:中等 | |
如图,已知AB是⊙O的直径,点C在⊙O上,且AB=13,BC=5. (1)求sin∠BAC的值; (2)如果OD⊥AC,垂足为D,求AD的长; (3)求图中阴影部分的面积.(精确到0.1) |
16. 难度:中等 | |
在矩形ABCD中,AB=2,AD=. (1)在边CD上找一点E,使EB平分∠AEC,并加以说明; (2)若P为BC边上一点,且BP=2CP,连接EP并延长交AB的延长线于F. ①求证:点B平分线段AF; ②△PAE能否由△PFB绕P点按顺时针方向旋转而得到?若能,加以证明,并求出旋转度数;若不能,请说明理由. |
17. 难度:中等 | |
在梯形ABCD中,AB∥CD,AD=BC,延长AB到E,使BE=CD,连接CE. (1)求证:CE=CA; (2)在上述条件下,若AF⊥CE于点F,且AF平分∠DAE,CD:AE=3:8,求cos∠ACF的值. |
18. 难度:中等 | |
如图,在平面直角坐标系中,已知点B(4,2),BA⊥x轴于A. (1)求tan∠BOA的值; (2)将点B绕原点逆时针方向旋转90°后记作点C,求点C的坐标; (3)将△OAB平移得到△O′A′B′,点A的对应点是A′,点B的对应点B'的坐标为(2,-2),在坐标系中作出△O′A′B′,并写出点O′、A′的坐标. |
19. 难度:中等 | |
在Rt△ABC中,∠C=90°,a=3,c=5,求sinA和tanA的值. |
20. 难度:中等 | |
如图,AB是半圆O的直径,F是半圆上一点,D是OA上一点,过点D作ED⊥AB,交半圆于点C,交BF的延长线于点E,连接AC,AF,BC. (1)求证:∠E=∠BCF; (2)求证:BC2=BF•BE; (3)若BC=12,CF=6,BF=9,求sin∠AFC. |
21. 难度:中等 | |
如图,梯形ABCD中,AD∥BC,AB⊥BC,已知AD=8,BC=12,AB=4.动点E从点B出发,沿射线BA以每秒3个单位的速度移动;同时动点F从点A出发,在线段AD上以每秒2个单位的速度向点D移动.当点F与点D重合时,E、F两点同时停止移动.设点E移动时间为t秒. (1)求当t为何值时,三点C、E、F共线; (2)设顺次连接四点B、C、F、E所得封闭图形的面积为S,求出S与t之间的函数关系(要求写出t的取值范围);并求当S取最大值时tan∠BEF的值; (3)求当t为何值时,以B、E、F为顶点的三角形是等腰三角形? |