1. 难度:中等 | |
如图,在△ABC中,AD是BC上的高,tanB=cos∠DAC. (1)求证:AC=BD; (2)若sin∠C=,BC=12,求AD的长. |
2. 难度:中等 | |
如图所示,在直角坐标平面内,O为原点,点A的坐标为(10,0),点B在第一象限内,BO=5,sin∠BOA=. 求:(1)点B的坐标;(2)cos∠BAO的值. |
3. 难度:中等 | |
请你画出一个以BC为底边的等腰△ABC,使底边上的高AD=BC. (1)求tan B和sinB的值; (2)在你所画的等腰△ABC中,假设底边BC=5米,求腰上的高BE. |
4. 难度:中等 | |
如图,在梯形ABCD中,AB∥CD,∠BCD=90°,且AB=1,BC=2,tan∠ADC=2. (1)求证:DC=BC; (2)E是梯形内一点,F是梯形外一点,且∠EDC=∠FBC,DE=BF,试判断△ECF的形状,并证明你的结论; (3)在(2)的条件下,当BE:CE=1:2,∠BEC=135°时,求sin∠BFE的值. |
5. 难度:中等 | |
阅读下列材料,并解决后面的问题. 在锐角△ABC中,∠A、∠B、∠C的对边分别是a、b、c.过A作AD⊥BC于D(如图),则sinB=,sinC=,即AD=csinB,AD=bsinC,于是csinB=bsinC, 即.同理有,. 所以…(*) 即:在一个三角形中,各边和它所对角的正弦的比相等. (1)在锐角三角形中,若已知三个元素a、b、∠A,运用上述结论(*)和有关定理就可以求出其余三个未知元素c、∠B、∠C,请你按照下列步骤填空,完成求解过程: 第一步:由条件a、b、∠A______∠B; 第二步:由条件∠A、∠B______∠C; 第三步:由条件____________c. (2)如图,已知:∠A=60°,∠C=75°,a=6,运用上述结论(*)试求b. |
6. 难度:中等 | |
如图所示,已知:在△ABC中,∠A=60°,∠B=45°,AB=8. 求:△ABC的面积.(结果可保留根号) |
7. 难度:中等 | |
如图,△ABC中,∠ACB=90°,AC=BC=1,将△ABC绕点C逆时针旋转角α.(0°<α<90°)得到△A1B1C1,连接BB1.设CB1交AB于D,AlB1分别交AB、AC于E、F. (1)在图中不再添加其它任何线段的情况下,请你找出一对全等的三角形,并加以证明(△ABC与△A1B1C1全等除外); (2)当△BB1D是等腰三角形时,求α; (3)当α=60°时,求BD的长. |
8. 难度:中等 | |
已知:如图,在△ABC中,AD是边BC上的高,E为边AC的中点,BC=14,AD=12,sinB=. 求:(1)线段DC的长; (2)tan∠EDC的值. |
9. 难度:中等 | |
已知:如图,AD是△ABC的外接圆直径,∠C=62°,BD=4,求AD的长(精确到0.01). |
10. 难度:中等 | |
如图,已知△BEC是等边三角形,∠AEB=∠DEC=90°,AE=DE,AC,BD的交点为O. (1)求证:△AEC≌△DEB; (2)若∠ABC=∠DCB=90°,AB=2 cm,求图中阴影部分的面积. |
11. 难度:中等 | |
我们知道,“直角三角形斜边上的高线将三角形分成两个与原三角形相似的直角三角形”用这一方法,将矩形ABCD分割成大小不同的七个相似直角三角形.按从大到小的顺序编号为①至⑦(如图),从而割成一副“三角七巧板”.已知线段AB=1,∠BAC=θ. (1)请用θ的三角函数表示线段BE的长______; (2)图中与线段BE相等的线段是______; (3)仔细观察图形,求出⑦中最短的直角边DH的长.(用θ的三角函数表示) |
12. 难度:中等 | |
先阅读短文,再解答短文后面的问题. 规定了方向的线段称为有向线段.比如,对于线段AB,规定以A为起点,B为终点,便可得到一条从A到B的有向线段.为强调其方向,我们在其终点B处画上箭头(如下图-1).以A为起点,B为终点的有向线段记为(起点字母A写在前面,终点字母B写在后面).线段AB的长度叫做有向线AB的长度(或模),记为||.显然,有向线段和有向线段长度相同.方向不同,它们不是同一条有向线段. 对于同一平面内的有向线段,我们可以在该平面建立直角坐标系进行研究(一般情况,直角坐标系的单位长度与有向线段的单位长度相同).比如,以坐标原点O(0,0)为起点,P(3,0)为终点的有向线段,其方向与x轴正方向相同,长度(或模)是||=3. 问题: (1)在如图所示的平面直角坐标系中画出有向线段,使得=3,与x轴正半轴的夹角是45°,且与y轴的负半轴的夹角是45°; (2)若有向线段的终点B的坐标为(3,),试求出它的模及它与x轴正半轴的夹角; (3)若点M、A、P在同一直线上,成立吗?试画出示意图加以说明.(示意图可以不画在平面直角坐标系中) |
13. 难度:中等 | |
如图,△ABC中,∠BAC=120°,AB=AC,BC=4,请你建立适当的直角坐标系,并写出A,B,C各点的坐标. |
14. 难度:中等 | |
已知:如图,在△ABC中,∠CAB=120°,AB=4,AC=2,AD⊥BC,D是垂足.求AD的长. |
15. 难度:中等 | |
已知:如图,在梯形ABCD中,AD∥BC,∠ABC=90°,∠C=45°,BE⊥CD于点E,AD=1,CD=.求:BE的长. |
16. 难度:中等 | |
如图:已知在Rt△ABC中,∠ABC=90°,∠C=60°,边AB=6cm. (1)求边AC和BC的值; (2)求以直角边AB所在的直线l为轴旋转一周所得的几何体的侧面积.(结果用含π的代数式表示) |
17. 难度:中等 | |
已知:如图,在Rt△ABC中,∠C=90°,∠ABC=60°,BC长为p,BBl是∠ABC的平分线交AC于点B1,过B1作B1B2⊥AB于点B2,过B2作B2B3∥BC交AC于点B3,过B3作B3B4⊥AB于点B4,过B4作B4B5∥BC交AC于点B5,过B5作B5B6⊥AB于点B6,…,无限重复以上操作.设b=BBl,b1=B1B2,b2=B2B3,b3=B3B4,b4=B4B5,…,bn=BnBn+1,…. (1)求b,b3的长; (2)求bn的表达式.(用含p与n的式子表示,其中n是正整数) |
18. 难度:中等 | |
在△ABC中,∠C=90°,∠A=60°,斜边上的高CD=,求AB的长. |
19. 难度:中等 | |
在矩形纸片ABCD中,AB=3,BC=6,沿EF折叠后,点C落在AB边上的点P处,点D落在点Q处,AD与PQ相交于点H,∠BPE=30°. (1)BE的长为______,QF的长为______; (2)四边形PEFH的面积为______ |
20. 难度:中等 | |
如图,在△ABC中,∠B=60°,BA=24cm,BC=16cm.现有动点P从点A出发,沿线段AB向点B运动;动点Q从点C出发,沿线段CB向点B运动,如果点P的速度是4cm/s,点Q的速度是2cm/s,它们同时出发,运动时间为t秒,求: (1)当t为何值时,△PBQ的面积是△ABC的面积的一半; (2)在第(1)问的前提下,P,Q两点之间的距离是多少? |
21. 难度:中等 | |
如图,在△ABC,∠B=30°,sin c=,AC=10,求AB的长. |
22. 难度:中等 | |
图中有两个正方形,A、C两点在大正方形的对角线上,△HAC是等边三角形.若AB=2,求EF的长.(参考数据:sin30°=,cos30°=,tan30°=;sin45°=,cos45°=,tan45°=1) |
23. 难度:中等 | |
在△ABC中,若∠A、∠B、∠C的对边分别为a、b、c,则有结论: a2=b2+c2-2bccosA b2=a2+c2-2accosB c2=a2+b2-2abcosC; (Ⅰ)上面的结论即为著名的余弦定理,试用文字语言表述余弦定理:______; 试用余弦定理解答下面的问题(Ⅱ): (Ⅱ)过边长为1的正三角形的中心O引两条夹角为120°的射线,分别与正三角形的边交于M、N两点,试求线段MN长的取值范围(借助图解答). |
24. 难度:中等 | |
如图,把一张长方形卡片ABCD放在宽度为10mm的横格线中,恰好四个顶点都在横格线上,已知α=32°,求长方形卡片的周长.(参考数据sin32°≈0.5cos32°≈0.8tan32°≈0.6) |
25. 难度:中等 | |
如图所示,小明在公司里放风筝,拿风筝线的手B离地面高度AB为1.5米,风筝飞到C处时的线长BC为30米,这时测得∠CBD=60°,求此时风筝离地面的高度.(结果精确到0.1米,=1.73) |
26. 难度:中等 | |
在玉溪州大河旁边的路灯杆顶上有一个物体,它的抽象几何图形如图,若AB=4,AC=10,∠ABC=60°,求B、C两点间的距离. |
27. 难度:中等 | |
图1为已建设封项的16层楼房和其塔吊图,图2为其示意图,吊臂AB与地面EH平行,测得A点到楼顶D点的距离为5m,每层楼高3.5m,AE、BF、CH都垂直于地面,EF=16m,求塔吊的高CH的长? |
28. 难度:中等 | |
路边路灯的灯柱BC垂直于地面,灯杆BA的长为2米,灯杆与灯柱BC成120°角,锥形灯罩的轴线AD与灯杆AB垂直,且灯罩轴线AD正好通过道路路面的中心线(D在中心线上).已知点C与点D之间的距离为12米,求灯柱BC的高.(结果保留根号) |
29. 难度:中等 | |
如图,小明家所住楼房的高度AB=10米,到对面较高楼房的距离BD=20米,当阳光刚好从两楼房的顶部射入时,测得光线与水平线的夹角为40°.据此,小明便知楼房CD的高度.请你写出计算过程(结果精确到0.1米.参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84) |
30. 难度:中等 | |
某课外活动小组测量学校旗杆的高度,当太阳光线与地面成35°角时,渢旗杆AB在地面上的投影BC的长为20米(如图).求旗杆AB的高度.(sin35°≈0.6,cos35°≈0.8,tan35°≈0.7) |