1. 难度:中等 | |
如图,在两个同心圆中,三条直径把大圆分成六等份,若在这个圆面上均匀地撒一把豆子,则豆子落在阴影部分的概率是 . |
2. 难度:中等 | |
如图,是由四个直角边分别为3和4的全等的直角三角形拼成的“赵爽弦图”,小亮随机的往大正方形区域内投针一次,则针扎在阴影部分的概率是 . |
3. 难度:中等 | |
如图所示的扇形图给出的是地球上海洋、陆地的表面积约占地球总表面积的百分比,若宇宙中有一块陨石落在地球上,则它落在海洋中的概率是 %. |
4. 难度:中等 | |
如图所示,圆盘被分成5等份,并在每份内标有“欢欢,迎迎,贝贝,晶晶,妮妮”,小明转动转盘,转盘停止时指针指向“欢欢”的概率是 . |
5. 难度:中等 | |
一只蚂蚁爬行在如图的方格纸上,当它停在某一方格中时,你认为蚂蚁停留在白格中的概率是 . |
6. 难度:中等 | |
如图,假设可以在图中每个小正方形内任意取点(每个小正方形除颜色外完全相同),那么这个点取在阴影部分的概率是 . |
7. 难度:中等 | |
在如图所示的8×8正方形网格纸板上进行投针实验,随意向纸板投中一针,投中阴影部分的概率是 . |
8. 难度:中等 | |
一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是 . |
9. 难度:中等 | |
如图,分别自由转动三个转盘(转盘被等分成6个扇形),指针指向白色区域的概率按从小到大的顺序是 < < .(只须填写相应的序号) |
10. 难度:中等 | |
如图所示,圆盘被分成8个全等的小扇形,分别写上数字1,2,3,4,5,6,7,8,自由转动圆盘,指针指向的数字<3的概率是 . |
11. 难度:中等 | |
如图所示,将转盘等分成六个扇形,并在上面依次写上数字1,2,3,4,5,6,指针的位置固定.自由转动转盘,当它停止时,指针指向偶数区域的概率是(指针指向两个扇形的交线时,当作指向右边的扇形) . |
12. 难度:中等 | |
如图,数轴上两点A,B,在线段AB上任取一点C,则点C到表示1的点的距离不大于2的概率是 . |
13. 难度:中等 | |
如图,是一个转盘,转盘分成6个相同的扇形,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).则指针指向阴影部分的概率是 . |
14. 难度:中等 | |
由一个圆平均分成8个相等扇形的转盘,每个扇形内标有如图数字,固定指针,转动转盘,则指针指到负数的概率是 . |
15. 难度:中等 | |
如图是由8块相同的等腰直角三角形黑白瓷砖镶嵌而成的正方形示意图,一只蚂蚁在上面自由爬动,并随机停留在某块瓷砖上,蚂蚁留在黑色瓷砖上的概率是 . |
16. 难度:中等 | |||||||||||||||||||
某商场利用转盘进行有奖促销活动,转盘扇形区域的圆心角及奖品设置如下表:小英有一次转盘的机会,能获奖得学习机的概率是 .
|
17. 难度:中等 | |
如图是一个被等分成6个扇形可自由转动的转盘,转动转盘,当转盘停止后,指针指向红色区域的概率是 . |
18. 难度:中等 | |
如图,创新广场上铺设了一种新颖的石子图案,它由五个过同一点且半径不同的圆组成,其中阴影部分铺黑色石子,其余部分铺白色石子.小鹏在规定地点随意向图案内投掷小球,每球都能落在图案内,经过多次试验,发现落在一、三、五环(阴影)内的概率分别是0.04,0.2,0.36,如果最大圆的半径是1米,那么黑色石子区域的总面积约为 米2(精确到0.01米2). |
19. 难度:中等 | |
如图,是一个圆形转盘,现按1:2:3:4分成四个部分,分别涂上红、黄、蓝、绿四种颜色,自由转动转盘,停止后指针落在绿色区域的概率为 . |
20. 难度:中等 | |
晓明玩转盘游戏,当他转动如图所示的转盘,转盘停止时指针指向2的概率是 . |
21. 难度:中等 | |
如图是一个被等分成12个扇形的转盘.请在转盘上选出若干个扇形涂上斜线(涂上斜线表示阴影区域,其中有一个扇形已涂),使得自由转动这个转盘,当它停止转动时,指针落在阴影区域的概率为 . |
22. 难度:中等 | |
(一)如图,放在直角坐标系中的正方形ABCD的边长为4.现做如下实验: 抛掷一枚均匀的正四面体骰子(它有四个顶点,各顶点的点数分别是1至4这四个数字中的一个),每个顶点朝上的机会是相同的,连续抛掷两次,将骰子朝上的顶点的点数作为直角坐标系中P点的坐标(第一次的点数作横坐标,第二次的点数作纵坐标). (1)求P点落在正方形ABCD面上(含正方形内和边界,下同)的概率; (2)将正方形ABCD平移整数个单位,则是否存在一种平移,使点P落在正方形ABCD面上的概率为?若存在,指出其中的一种平移方式;若不存在,请说明理由; (二)若将(一)中所做实验用的“正四面体骰子”改为“各面标有1至6这六个数字中的一个的正方体骰子”,其余(实验步骤、作用)均不变.将正方形ABCD平移整数个单位,试求出点P落在正方形ABCD面上的概率. |
23. 难度:中等 | |
已知:如图,⊙O的直径AD=2,,∠BAE=90度. (1)求△CAD的面积; (2)如果在这个圆形区域中,随机确定一个点P,那么点P落在四边形ABCD区域的概率是多少? |
24. 难度:中等 | |
如图,放在平面直角坐标系中的正方形ABCD的边长为4,现做如下实验:抛掷一枚均匀的正四面体骰子(如图,它有四个顶点,各顶点数分别是1、2、3、4),每个顶点朝上的机会是相同的,连续抛掷两次,将骰子朝上的点数作为直角坐标系中点P的坐标(第一次的点数为横坐标,第二次的点数为纵坐标). (1)求点P落在正方形面上(含边界,下同)的概率; (2)将正方形ABCD平移数个单位,是否存在一种平移,使点P落在正方形面上的概率为?若存在,指出其中的一种平移方式;若不存在,说明理由. |
25. 难度:中等 | |
如图所示,转盘被等分成八个扇形,并在上面依次标有数字1,2,3,4,5,6,7,8. (1)自由转动转盘,当它停止转动时,指针指向的数正好能被8整除的概率是多少? (2)请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向的区域的概率为. (注:指针指在边缘处,要重新转,直至指到非边缘处). |
26. 难度:中等 | |
小明家里的阳台地面,水平铺设着仅黑白颜色不同的18块方砖(如图),他从房间里向阳台抛小皮球,小皮球最终随机停留在某块方砖上. (1)求小皮球分别停留在黑色方砖与白色方砖上的概率; (2)上述哪个概率较大?要使这两个概率相等,应改变第几行第几列的哪块方砖颜色?怎样改变? |
27. 难度:中等 | |
如图,转盘被等分成六个扇形区域,并在上面依次写上数字:1、2、3、4、5、6.转盘指针的位置固定,转动转盘后任其自由停止. (1)当停止转动时,指针指向奇数区域的概率是多少? (2)请你用这个转盘设计一个游戏(六等分扇形不变),使自由转动的转盘停止时,指针指向的区域的概率为,并说明你的设计理由.(设计方案可用图示表示,也可以用文字表述) |
28. 难度:中等 | |||||||||||
某商场进行有奖促销活动.活动规则:购买500元商品就可以获得一次转转盘的机会,(转盘分为5个扇形区域,分别是特等奖、一等奖、二等奖、三等奖、不获奖),转盘指针停在哪个获奖区域就可以获得该区域相应等级奖品一件.商场工作人员在制作转盘时,将获奖扇形区域圆心角分配如下表:
(2)如果不用转盘,请设计一种等效实验方案. (要求写清楚替代工具和实验规则) |
29. 难度:中等 | |
如图所示,转盘被等分成六个扇形,并在上面依次写上数字1,2,3,4,5,6; (1)若自由转动转盘,当它停止转动时,指针指向奇数区的概率是多少? (2)请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向的区域的概率为. |
30. 难度:中等 | |
如图,一个被等分成4个扇形的圆形转盘,其中3个扇形分别标有数字2,5,6,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动转盘). (1)求当转动这个转盘,转盘自由停止后,指针指向没有标数字的扇形的概率; (2)请在4,7,8,9这4个数字中选出一个数字填写在没有标数字的扇形内,使得分别转动转盘2次,转盘自由停止后指针所指扇形的数字和分别为奇数与为偶数的概率相等,并说明理由. |