1. 难度:中等 | |
数学课上,李老师出示了这样一道题目:如图1,正方形ABCD的边长为12,P为边BC延长线上的一点,E为DP的中点,DP的垂直平分线交边DC于M,交边AB的延长线于N.当CP=6时,EM与EN的比值是多少? 经过思考,小明展示了一种正确的解题思路:过E作直线平行于BC交DC,AB分别于F,G,如图2,则可得:,因为DE=EP,所以DF=FC.可求出EF和EG的值,进而可求得EM与EN的比值. (1)请按照小明的思路写出求解过程. (2)小东又对此题作了进一步探究,得出了DP=MN的结论,你认为小东的这个结论正确吗?如果正确,请给予证明;如果不正确,请说明理由. |
2. 难度:中等 | |
如图,在直角梯形OABC中,OA∥CB,A、B两点的坐标分别为A(15,0),B(10,12),动点P、Q分别从O、B两点出发,点P以每秒2个单位的速度沿OA向终点A运动,点Q以每秒1个单位的速度沿BC向C运动,当点P停止运动时,点Q也同时停止运动.线段OB、PQ相交于点D,过点D作DE∥OA,交AB于点E,射线QE交x轴于点F.设动点PQ运动时间为t(单位:秒). (1)当t为何值时,四边形PABQ是等腰梯形,请写出推理过程; (2)当t=2秒时,求梯形OFBC的面积; (3)当t为何值时,△PQF是等腰三角形?请写出推理过程. |
3. 难度:中等 | |
已知:线段OA⊥OB,点C为OB中点,D为线段OA上一点.连接AC,BD交于点P. (1)如图1,当OA=OB,且D为OA中点时,求的值; (2)如图2,当OA=OB,且时,求tan∠BPC的值. (3)如图3,当AD:AO:OB=1:n:时,直接写出tan∠BPC的值. |
4. 难度:中等 | |
如图1,∠ACB=90°,CD⊥AB,垂足为D,点E在AC上,BE交CD于点G,EF⊥BE交AB于点F,若AC=mBC,CE=kEA,探索线段EF与EG的数量关系,并证明你的结论. 说明:如果你反复探索没有解决问题,可以选取(1)或(2)中的条件,选(1)中的条件完成解答满分为7分;选(2)中的条件完成解答满分为5分. (1)m=1(如图2) (2)m=1,k=1(如图3) |
5. 难度:中等 | |
已知:如图,在△ABC中,∠ACB的平分线CD交AB于D,过B作BE∥CD交AC的延长线于点E. (1)求证:BC=CE; (2)求证:. |
6. 难度:中等 | |
如图,在△ABC中,AB=AC,BE平分∠ABC,DE∥BC. 求证:DE=EC. |
7. 难度:中等 | |
在平行四边形ABCD中,AC=4,BD=6,P是BD上的.任一点,过P作EF∥AC,与平行四边形的两条边分别交于点E,F.如图,设BP=x,EF=y,则能反映y与x之间关系的图象为( ) A. B. C. D. |
8. 难度:中等 | |
如图,△ABC是边长为6cm的等边三角形,被一平行于BC的矩形所截,AB被截成三等分,则图中阴影部分的面积为( ) A.4cm2 B.2cm2 C.3cm2 D.3cm2 |
9. 难度:中等 | |
如图,在△ABC中,点D、E分AB、AC边上,DE∥BC,若AD:AB=3:4,AE=6,则AC等于( ) A.3 B.4 C.6 D.8 |
10. 难度:中等 | |
如图,设M、N分别是直角梯形ABCD两腰AD、CB的中点,DE上AB于点E,将△ADE沿DE翻折,M与N恰好重合,则AE:BE等于( ) A.2:1 B.1:2 C.3:2 D.2:3 |
11. 难度:中等 | |
如图,已知AB∥CD∥EF,那么下列结论正确的是( ) A. B. C. D. |
12. 难度:中等 | |
如图,直线l1∥l2∥l3,另两条直线分别交l1、l2、l3于点A、B、C及点D、E、F,且AB=3,DE=4,EF=2,则( ) A.BC:DE=1:2 B.BC:DE=2:3 C.BC•DE=8 D.BC•DE=6 |
13. 难度:中等 | |
如图,直线AB∥CD∥EF,若AC=3,CE=4,则的值是( ) A. B. C. D. |
14. 难度:中等 | |
哥哥身高1.68米,在地面上的影子长是2.1米,同一时间测得弟弟的影子长1.8米,则弟弟身高是( ) A.1.44米 B.1.52米 C.1.96米 D.2.25米 |
15. 难度:中等 | |
如图,在平行四边形ABCD中,E是AD上一点,连接CE并延长交BA的延长线于点F,则下列结论中错误的是( ) A.∠AEF=∠DEC B.FA:CD=AE:BC C.FA:AB=FE:EC D.AB=DC |
16. 难度:中等 | |
如图,正方形ABCD的边长为1cm,E、F分别是BC、CD的中点,连接BF、DE,则图中阴影部分的面积是 cm2. |
17. 难度:中等 | |
将边长分别为2、3、5的三个正方形按图所示的方式排列,则图中阴影部分的面积为 . |
18. 难度:中等 | |
如图所示,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的点P处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为 米. |
19. 难度:中等 | |
在△ABC中,点D、E分别在边AB和AC上,且DE∥BC,如果AD=2,DB=4,AE=3,那么EC= . |
20. 难度:中等 | |
如图,体育兴趣小组选一名身高1.6m的同学直立于旗杆影子的顶端处,其他人分为两部分,一部分同学测得该同学的影长为1.2m,另一部分同学测得同一时刻旗杆影长为9m,那么旗杆的高度是 m. |
21. 难度:中等 | |
如图,直线AlA∥BB1∥CC1,若AB=8,BC=4,A1B1=6,则线段B1C1的长是 . |
22. 难度:中等 | |
如图,已知直角梯形ABCD中,AD∥BC,∠B=90°,AB=12cm,BC=8cm,DC=13cm,动点P沿A→D→C线路以2cm/秒的速度向C运动,动点Q沿B→C线路以1cm/秒的速度向C运动.P、Q两点分别从A、B同时出发,当其中一点到达C点时,另一点也随之停止.设运动时间为t秒,△PQB的面积为ycm2. (1)求AD的长及t的取值范围; (2)当1.5≤t≤t(t为(1)中t的最大值)时,求y关于t的函数关系式; (3)请具体描述:在动点P、Q的运动过程中,△PQB的面积随着t的变化而变化的规律. |
23. 难度:中等 | |
如图1,已知四边形ABCD是菱形,G是线段CD上的任意一点时,连接BG交AC于F,过F作FH∥CD交BC于H,可以证明结论成立.(考生不必证明) (1)探究:如图2,上述条件中,若G在CD的延长线上,其它条件不变时,其结论是否成立?若成立,请给出证明;若不成立,请说明理由; (2)计算:若菱形ABCD中AB=6,∠ADC=60°,G在直线CD上,且CG=16,连接BG交AC所在的直线于F,过F作FH∥CD交BC所在的直线于H,求BG与FG的长. (3)发现:通过上述过程,你发现G在直线CD上时,结论还成立吗? |