1. 难度:中等 | |
廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为y=-x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是 米.(精确到1米) |
2. 难度:中等 | |
飞机着陆后滑行的距离s(单位:米)与滑行的时间t(单位:秒)之间的函数关系式是s=60t-1.5t2.飞机着陆后滑行 秒才能停下来. |
3. 难度:中等 | |
自由下落物体的高度h(米)与下落的时间t(秒)的关系为h=4.9t2.现有一铁球从离地面19.6米高的建筑物的顶部作自由下落,到达地面需要的时间是 秒. |
4. 难度:中等 | |
“中山桥”是位于兰州市中心、横跨黄河之上的一座百年老桥.如图1,桥上有五个拱形桥架紧密相联,每个桥架的内部有一个水平横梁和八个垂直于横梁的立柱,气势雄伟,素有“天下黄河第一桥”之称,如图2,一个拱形桥架可以近似看作是由等腰梯形ABD8D1和其上方的抛物线D1OD8组成.若建立如图所示的直角坐标系,跨度AB=44米,∠A=45°,AC1=4米,点D2的坐标为(-13,-1.69),则桥架的拱高OH= 米. |
5. 难度:中等 | |
某涵洞的截面是抛物线型,如图所示,在图中建立的直角坐标系中,抛物线的解析式为y=-x2,当涵洞水面宽AB为12米时,水面到桥拱顶点O的距离为 米. |
6. 难度:中等 | |||||||||||||||
某品牌电饭锅成本价为70元,销售商对其销量与定价的关系进行了调查,结果如下:
|
7. 难度:中等 | |
金华商店门前和店内MP4柜台前分别横排着6块灯箱广告牌,现决定在这两排广告牌中共拆除8块,以增加顾客流通量,已知进入店内顾客流通增加量与前排广告牌拆除块数成正比,MP4柜台顾客流通增加量和店内顾客流通增加量与柜前广告牌拆除块数之积成正比,要使MP4柜台顾客流通增加量最大,则前后两排各拆除广告牌 块. |
8. 难度:中等 | |
用长度一定的绳子围成一个矩形,如果矩形的一边长x(m)与面积y(m2)满足函数关系y=-(x-12)2+144(0<x<24),则该矩形面积的最大值为 m2. |
9. 难度:中等 | |
如图,抛物线y=ax2+c(a<0)交x轴于点G,F,交y轴于点D,在x轴上方的抛物线上有两点B,E,它们关于y轴对称,点G,B在y轴左侧,BA⊥OG于点A,BC⊥OD于点C,四边形OABC与四边形ODEF的面积分别为6和10,则△ABG与△BCD的面积之和为 . |
10. 难度:中等 | |
二次函数y=x2的图象如图所示,点A位于坐标原点,A1,A2,A3,…,A2008在y轴的正半轴上,B1,B2,B3,…,B2008在二次函数y=x2第一象限的图象上,若△AB1A1,△A1B2A2,△A2B3A3,…,△A2007B2008A2008都为等边三角形,请计算△AB1A1的边长= ;△A1B2A2的边长= ;△A2007B2008A2008的边长= . |
11. 难度:中等 | |
如图,在平面直角坐标系中,二次函数y=ax2+c(a≠0)的图象过正方形ABOC的三个顶点A、B、C,则ac的值是 . |
12. 难度:中等 | |
如图,矩形ABCD的长AB=4cm,宽AD=2cm.O是AB的中点,OP⊥AB,两半圆的直径分别为AO与OB.抛物线的顶点是O,关于OP对称且经过C、D两点,则图中阴影部分的面积是 cm2. |
13. 难度:中等 | |
如图正方形ABCD的边长为2cm,O是AB的中点,也是抛物线的顶点,OP⊥AB,两半圆的直径分别为OA与OB.抛物线经过C、D两点,且关于OP对称,则图中阴影部分的面积之和为 cm2.(π取3.14,结果保留2个有效数字) |
14. 难度:中等 | |
直角坐标系xOy中,O是坐标原点,抛物线y=x2-x-6与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.如果点M在y轴右侧的抛物线上,S△AMO=S△COB,那么点M的坐标是 . |
15. 难度:中等 | |
如图,半圆A和半圆B均与y轴相切于O,其直径CD、EF和x轴垂直,以O为顶点的两条抛物线分别经过点C、E和D、F,则图中阴影部分面积是 . |
16. 难度:中等 | |
近年来,“宝胜”集团根据市场变化情况,采用灵活多样的营销策略,产值、利税逐年大幅度增长.第六销售公司2004年销售某型号电缆线达数万米,这得益于他们较好地把握了电缆售价与销售数量之间的关系.经市场调研,他们发现:这种电缆线一天的销量y(米)与售价x(元/米)之间存在着如图所示的一次函数关系,且40≤x≤70. (1)根据图象,求y与x之间的函数解析式; (2)设该销售公司一天销售这种型号电缆线的收入为w元. ①试用含x的代数式表示w; ②试问:当售价定为每米多少元时,该销售公司一天销售该型号电缆的收入最高,最高是多少元? |
17. 难度:中等 | |||||||||||||
为实现沈阳市森林城市建设的目标,在今年春季的绿化工作中,绿化办计划为某住宅小区购买并种植400株树苗.某树苗公司提供如下信息:
信息二:如下表:设购买杨树、柳树分别为x株、y株. (1)写出y与x之间的函数关系式(不要求写出自变量的取值范围); (2)当每株柳树的批发价p等于3元时,要使这400株树苗两年后对该住宅小区的空气净化指数不低于90,应该怎样安排这三种树苗的购买数量,才能使购买树苗的总费用最低?最低的总费用是多少元? (3)当每株柳树批发价p(元)与购买数量y(株)之间存在关系p=3-0.005y时,求购买树苗的总费用w(元)与购买杨树数量x(株)之间的函数关系式?(不要求写出自变量的取值范围) |
18. 难度:中等 | |
已知,二次函数的表达式为y=4x2+8x.写出这个函数图象的对称轴和顶点坐标,并求图象与x轴的交点的坐标. |
19. 难度:中等 | |
求二次函数y=x2-2x-1的顶点坐标及它与x轴的交点坐标. |
20. 难度:中等 | |
已知抛物线y=x2+x-. (1)用配方法求出它的顶点坐标和对称轴; (2)若抛物线与x轴的两个交点为A、B,求线段AB的长. |
21. 难度:中等 | |
二次函数y=x2的图象如图所示,请将此图象向右平移1个单位,再向下平移2个单位. (1)画出经过两次平移后所得到的图象,并写出函数的解析式; (2)求经过两次平移后的图象与x轴的交点坐标,指出当x满足什么条件时,函数值大于0? |
22. 难度:中等 | |||||||||||||||||
下表给出了代数式x2+bx+c与x的一些对应值:
(2)设y=x2+bx+c,则当x取何值时,y>0; (3)请说明经过怎样平移函数y=x2+bx+c的图象得到函数y=x2的图象? |
23. 难度:中等 | |
已知二次函数y=ax2+bx-3的图象经过点A(2,-3),B(-1,0). (1)求二次函数的解析式; (2)填空:要使该二次函数的图象与x轴只有一个交点,应把图象沿y轴向上平移______个单位. |
24. 难度:中等 | |
已知二次函数的图象以A(-1,4)为顶点,且过点B(2,-5) ①求该函数的关系式; ②求该函数图象与坐标轴的交点坐标; ③将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积. |
25. 难度:中等 | |
已知二次函数y=x2+2x+c的图象经过点(1,-5). (1)求c的值; (2)求函数图象与x轴的交点坐标. |
26. 难度:中等 | |
已知二次函数y=ax2+bx+c. (1)若a=2,c=-3,且二次函数的图象经过点(-1,-2),求b的值; (2)若a=2,b+c=-2,b>c,且二次函数的图象经过点(p,-2),求证:b≥0; (3)若a+b+c=0,a>b>c,且二次函数的图象经过点(q,-a),试问当自变量x=q+4时,二次函数y=ax2+bx+c所对应的函数值y是否大于0?请证明你的结论. |
27. 难度:中等 | |
(1)把二次函数y=-x2+x+代成y=a(x-h)2+k的形式; (2)写出抛物线y=-x2+x+的顶点坐标和对称轴,并说明该抛物线是由哪一条形如y=ax2的抛物线经过怎样的变换得到的; (3)如果抛物线y=-x2+x+中,x的取值范围是0≤x≤3,请画出图象,并试着给该抛物线编一个具有实际意义的情境.(如喷水、掷物、投篮等) |
28. 难度:中等 | |
已知二次函数y=x2+2x+m的图象C1与x轴有且只有一个公共点. (1)求C1的顶点坐标; (2)将C1向下平移若干个单位后,得抛物线C2,如果C2与x轴的一个交点为A(-3,0),求C2的函数关系式,并求C2与x轴的另一个交点坐标; (3)若P(n,y1),Q(2,y2)是C1上的两点,且y1>y2,求实数n的取值范围. |
29. 难度:中等 | |
已知二次函数y=x2+bx-c的图象与x轴两交点的坐标分别为(m,0),(-3m,0)(m≠0). (1)证明4c=3b2; (2)若该函数图象的对称轴为直线x=1,试求二次函数的最小值. |
30. 难度:中等 | |
已知关于x的方程mx2-(3m-1)x+2m-2=0. (1)求证:无论m取任何实数时,方程恒有实数根; (2)若关于x的二次函数y=mx2-(3m-1)x+2m-2的图象与x轴两交点间的距离为2时,求抛物线的解析式; (3)在直角坐标系xoy中,画出(2)中的函数图象,结合图象回答问题:当直线y=x+b与(2)中的函数图象只有两个交点时,求b的取值范围. |