1. 难度:中等 | |
利用图象解一元二次方程x2-2x-1=0时,我们采用的一种方法是:在直角坐标系中画出抛物线y=x2和直线y=2x+1,两图象交点的横坐标就是该方程的解. (1)请再给出一种利用图象求方程x2-2x-1=0的解的方法; (2)已知函数y=x3的图象(如图):求方程x3-x-2=0的解.(结果保留2个有效数字) |
2. 难度:中等 | |||||||||||||||||||||||||||||
已知二次函数y=x2+px+q(p,q为常数,△=p2-4q>0)的图象与x轴相交于A(x1,0),B(x2,0)两点,且A,B两点间的距离为d,例如,通过研究其中一个函数y=x2-5x+6及图象(如图),可得出表中第2行的相关数据. (1)在表内的空格中填上正确的数; (2)根据上述表内d与△的值,猜想它们之间有什么关系?再举一个符合条件的二次函数,验证你的猜想; (3)对于函数y=x2+px+q(p,q为常数,△=p2-4q>0)证明你的猜想.聪明的小伙伴:你能再给出一种不同于(3)的正确证明吗?我们将对你的出色表现另外奖励3分.
|
3. 难度:中等 | |
阅读材料,解答问题. 利用图象法解一元二次不等式:x2-2x-3>0. 【解析】 设y=x2-2x-3,则y是x的二次函数.∵a=1>0,∴抛物线开口向上. 又∵当y=0时,x2-2x-3=0,解得x1=-1,x2=3. ∴由此得抛物线y=x2-2x-3的大致图象如图所示. 观察函数图象可知:当x<-1或x>3时,y>0. ∴x2-2x-3>0的解集是:x<-1或x>3. (1)观察图象,直接写出一元二次不等式:x2-2x-3<0的解集是______; (2)仿照上例,用图象法解一元二次不等式:x2-1>0.(大致图象画在答题卡上) |
4. 难度:中等 | |||||||||||||||||||||||||
(Ⅰ)请将下表补充完整;
(Ⅲ)利用你在填上表时获得的结论,试写出一个解集为全体实数的一元二次不等式; (Ⅳ)试写出利用你在填上表时获得的结论解一元二次不等式ax2+bx+c>0(a≠0)时的解题步骤. |
5. 难度:中等 | |||||||||||
今年我国多个省市遭受严重干旱,受旱灾的影响,4月份,我市某蔬菜价格呈上升趋势,其前四周每周的平均销售价格变化如下表:
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识直接写出4月份y与x的函数关系式,并求出5月份y与x的函数关系式; (2)若4月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为m=x+1.2,5月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为m=x+2.试问4月份与5月份分别在哪一周销售此种蔬菜一千克的利润最大?且最大利润分别是多少? (3)若5月份的第2周共销售100吨此种蔬菜.从5月份的第3周起,由于受暴雨的影响,此种蔬菜的可供销量将在第2周销量的基础上每周减少a%,政府为稳定蔬菜价格,从外地调运2吨此种蔬菜,刚好满足本地市民的需要,且使此种蔬菜的销售价格比第2周仅上涨0.8a%.若在这一举措下,此种蔬菜在第3周的总销售额与第2周刚好持平,请你参考以下数据,通过计算估算出a的整数值. (参考数据:372=1369,382=1444,392=1521,402=1600,412=1681) |
6. 难度:中等 | |
如图1,某灌溉设备的喷头B高出地面1.25m,喷出的抛物线形水流在与喷头底部A的距离为1m处达到距地面最大高度2.25m,试在恰当的直角坐标系中求出与该抛物线水流对应的二次函数关系式. 学生小龙在解答图1所示的问题时,具体解答如下: ①以水流的最高点为原点,过原点的水平线为横轴,过原点的铅垂线为纵轴,建立如图 2所示的平面直角坐标系; ②设抛物线水流对应的二次函数关系式为y=ax2; ③根据题意可得B点与x轴的距离为1m,故B点的坐标为(-1,1); ④代入y=ax2得-1=a•1,所以a=-1; ⑤所以抛物线水流对应的二次函数关系式为y=-x2. 数学老师看了小龙的解题过程说:“小龙的解答是错误的”. (1)请指出小龙的解答从第______步开始出现错误,错误的原因是什么? (2)请你写出完整的正确解答过程. |
7. 难度:中等 | |||||||||
X市与W市之间的城际铁路正在紧张有序的建设中,在建成通车前,进行了社会需求调查,得到一列火车一天往返次数m与该列车每次拖挂车厢节数如下:
(2)结合你的求出的函数探究一列火车每次挂多少节车厢,一天往返多少次时,一天的设计运营人数Q最多(每节车厢容量设定为常数p) |
8. 难度:中等 | |
某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价增加x元(x为10的正整数倍). (1)设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围; (2)设宾馆一天的利润为w元,求w与x的函数关系式; (3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元? |
9. 难度:中等 | |
用长度为20m的金属材料制成如图所示的金属框,下部为矩形,上部为等腰直角三角形,其斜边长为2xm.当该金属框围成的图形面积最大时,图形中矩形的相邻两边长各为多少?请求出金属框围成的图形的最大面积. |
10. 难度:中等 | |
学校计划用地面砖铺设教学楼前矩形广场的地面ABCD,已知矩形广场地面的长为100米,宽为80米.图案设计如图所示:广场的四角为小正方形,阴影部分为四个矩形,四个矩形的宽都为小正方形的边长,阴影部分铺绿色地面砖,其余部分铺白色地面砖. (1)要使铺白色地面砖的面积为5200平方米,那么矩形广场四角的小正方形的边长为多少米? (2)如果铺白色地面砖的费用为每平方米30元.铺绿色地面砖的费用为每平方米20元,当广场四角小正方形的边长为多少米时,铺广场地面的总费用最少?最少费用是多少? |
11. 难度:中等 | |
某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w(千克)随销售单价x(元/千克)的变化而变化,具体关系式为:w=-2x+240.设这种绿茶在这段时间内的销售利润为y(元),解答下列问题: (1)求y与x的关系式; (2)当x取何值时,y的值最大? (3)如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元? |
12. 难度:中等 | |
近期以来,大蒜和绿豆的市场价格离奇攀升,网民戏称为“蒜你狠”,“豆你玩”.以绿豆为例,5月份上旬的市场价格已达16元/千克.市政府决定采取价格临时干预措施,调进绿豆以平抑市场价格.经市场调研预测,该市每调进100吨绿豆,市场价格就下降1元/千克.为了即能平抑市场价格,又要保护豆农的生产积极性,绿豆的市场价格控制在8元/千克到10元/千克之间(含8元/千克和10元/千克).问调进绿豆的吨数应在什么范围内为宜? |
13. 难度:中等 | ||||||||||
某公司有甲,乙两个绿色农产品种植基地,在收获期这两个基地当天收获的某种农产品,一部分存入仓库,另一部分运往外地销售,根据经验,该农产品在收获过程中两个种植基地累积总产量y(吨)与收获天数x(天)满足函数关系y=2x+3(1≤x≤10且x为整数).该农产品在收获过程中甲,乙两基地累积产量分别占两基地累积总产量的百分比和甲,乙两基地累积存入仓库的量分别占甲,乙两基地的累积产量的百分比如下表:
(2)设在收获过程中甲,乙两基地累积存入仓库的该种农产品的总量为p(吨),请求出p(吨)与收获天数x(天)的函数关系式; (3)在(2)的基础上,若仓库内原有该种农产品42.6吨,为满足本地市场需求,在此收获期开始的同时,每天从仓库调出一部分该种农产品投入本地市场,若在本地市场售出该种农产品总量m(吨)与收获天x(天)满足函数关系m=-x2+13.2x-1.6(1≤x≤10且x为整数).问在此收获期内连续销售几天,该农产品库存量达到最低值?最低库存量是多少吨? |
14. 难度:中等 | |
儿童商场购进一批M型服装,销售时标价为75元/件,按8折销售仍可获利50%.商场现决定对M型服装开展促销活动,每件在8折的基础上再降价x元销售,已知每天销售数量y(件)与降价x(元)之间的函数关系式为y=20+4x(x>0). (1)求M型服装的进价; (2)求促销期间每天销售M型服装所获得的利润W的最大值. |
15. 难度:中等 | |
如图,小明在一次高尔夫球争霸赛中,从山坡下O点打出一球向球洞A点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大水平高度12米时,球移动的水平距离为9米.已知山坡OA与水平方向OC的夹角为30°,O、A两点相距8米. (1)求出点A的坐标及直线OA的解析式; (2)求出球的飞行路线所在抛物线的解析式; (3)判断小明这一杆能否把高尔夫球从O点直接打入球洞A点? |
16. 难度:中等 | |
某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克. (1)现该商场要保证每天盈利6 000元,同时又要顾客得到实惠,那么每千克应涨价多少元? (2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多? |
17. 难度:中等 | |
某市政府大力扶持大学生创业,李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-10x+500. (1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润? (2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元? (3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元? (成本=进价×销售量) |
18. 难度:中等 | |
如图,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B.有人在直线AB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内.已知AB=4米,AC=3米,网球飞行最大高度OM=5米,圆柱形桶的直径为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计). (1)如果竖直摆放5个圆柱形桶时,网球能不能落入桶内? (2)当竖直摆放圆柱形桶多少个时,网球可以落入桶内? |
19. 难度:中等 | |
如图,八一广场要设计一个矩形花坛,花坛的长、宽分别为200m、120m,花坛中有一横两纵的通道,横、纵通道的宽度分别为3xm、2xm. (1)用代数式表示三条通道的总面积S;当通道总面积为花坛总面积的时,求横、纵通道的宽分别是多少? (2)如果花坛绿化造价为每平方米3元,通道总造价为3168x元,那么横、纵通道的宽分别为多少米时,花坛总造价最低?并求出最低造价. (以下数据可供参考:852=7225,862=7396,872=7569) |
20. 难度:中等 | |
国家推行“节能减排,低碳经济”政策后,某环保节能设备生产企业的产品供不应求.若该企业的某种环保设备每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于90万元.已知这种设备的月产量x(套)与每套的售价y1(万元)之间满足关系式y1=170-2x,月产量x(套)与生产总成本y2(万元)存在如图所示的函数关系. (1)直接写出y2与x之间的函数关系式; (2)求月产量x的范围; (3)当月产量x(套)为多少时,这种设备的利润W(万元)最大?最大利润是多少? |
21. 难度:中等 | |
某商店经营一种小商品,进价为2.5元,据市场调查,销售单价是13.5元时平均每天销售量是500件,而销售价每降低1元,平均每天就可以多售出100件. (1)假定每件商品降价x元,商店每天销售这种小商品的利润是y元,请写出y与x间的函数关系式,并注明x的取值范围. (2)每件小商品销售价是多少元时,商店每天销售这种小商品的利润最大?最大利润是多少?(注:销售利润=销售收入-购进成本) |
22. 难度:中等 | |
某商场购进一批单价为50元的商品,规定销售时单价不低于进价,每件的利润不超过40%.其中销售量y(件)与所售单价x(元)的关系可以近似的看作如图所表示的一次函数. (1)求y与x之间的函数关系式,并求出x的取值范围; (2)设该公司获得的总利润(总利润=总销售额-总成本)为w元,求w与x之间的函数关系式,当销售单价为何值时,所获利润最大,最大利润是多少? |
23. 难度:中等 | |
如图中是抛物线形拱桥,当水面在n时,拱顶离水面2m,水面宽4m,水面下降1m,水面宽度增加多少? |
24. 难度:中等 | |
如图,东梅中学要在教学楼后面的空地上用40米长的竹篱笆围出一个矩形地块作生物园,矩形的一边用教学楼的外墙,其余三边用竹篱笆.设矩形的宽为x,面积为y. (1)求y与x的函数关系式,并求自变量x的取值范围; (2)生物园的面积能否达到210平方米?说明理由. |
25. 难度:中等 | |
某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售. 若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y=x+150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w内(元)(利润=销售额-成本-广告费). 若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳x2元的附加费,设月利润为w外(元)(利润=销售额-成本-附加费). (1)当x=1000时,y=______元/件,w内=______元; (2)分别求出w内,w外与x间的函数关系式(不必写x的取值范围); (3)当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值; (4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大? 参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(). |
26. 难度:中等 | |
恩施州绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在我州收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售. (1)若存放x天后,将这批香菇一次性出售,设这批香菇的销售总金额为y元,试写出y与x之间的函数关系式. (2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润=销售总金额-收购成本-各种费用) (3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少? |
27. 难度:中等 | |
工程师有一块长AD为12分米,宽AB为8分米的铁板,截去了长AE=2分米,AF=4分米的直角三角形,在余下的五边形中结的矩形MGCH,M必须在线段EF上. (1)若截得矩形MGCH的面积为70平方分米,求矩形MGCH的长和宽. (2)当EM为多少时,矩形MGCH的面积最大?并求此时矩形的周长. |
28. 难度:中等 | |
如图,一面利用墙,用篱笆围成一个外形为矩形的花圃,花圃的面积为S平方米,平行于院墙的一边长为x米. (1)若院墙可利用最大长度为10米,篱笆长为24米,花圃中间用一道篱笆间隔成两个小矩形,求S与x之间函数关系. (2)在(1)的条件下,围成的花圃面积为45平方米时,求AB的长.能否围成面积比45平方米更大的花圃?如果能,应该怎么围?如果不能请说明理由. (3)当院墙可利用最大长度为40米,篱笆长为77米,中间建n道篱笆间隔成小矩形,当这些小矩形为正方形,且x为正整数时,请直接写出一组满足条件的x,n的值. |
29. 难度:中等 | |
为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙店一律按原价的80%销售.现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元;如果全部在乙商家购买,则所需金额为y2元. (1)分别求出y1、y2与x之间的函数关系式; (2)若市政府投资140万元,最多能购买多少个太阳能路灯? |
30. 难度:中等 | |
荆州市“建设社会主义新农村”工作组到某县大棚蔬菜生产基地指导菜农修建大棚种植蔬菜.通过调查得知:平均修建每公顷大棚要用支架、农膜等材料费2.7万元;购置滴灌设备,这项费用(万元)与大棚面积(公顷)的平方成正比,比例系数为0.9;另外每公顷种植蔬菜需种子、化肥、农药等开支0.3万元.每公顷蔬菜年均可卖7.5万元. (1)基地的菜农共修建大棚x(公顷),当年收益(扣除修建和种植成本后)为y(万元),写出y关于x的函数关系式. (2)若某菜农期望通过种植大棚蔬菜当年获得5万元收益,工作组应建议他修建多少公顷大棚.(用分数表示即可) (3)除种子、化肥、农药投资只能当年受益外,其它设施3年内不需增加投资仍可继续使用.如果按3年计算,是否修建大棚面积越大收益越大?修建面积为多少时可以得到最大收益?请帮工作组为基地修建大棚提一项合理化建议. |