相关试卷
当前位置:首页 > 初中数学试卷 > 试卷信息
第20章《二次函数和反比例函数》中考题集(24):20.5 二次函数的一些应用(解析版)
一、解答题
详细信息
1. 难度:中等
东方专卖店专销某种品牌的钢笔,进价12元/支,售价20元/支.为了促销,专卖店决定凡是买10支以上的,每多买一支,售价就降低0.10元(例如,某人买20支计算器,于是每只降价0.10×(20-10)=1元,就可以按19元/支的价格购买),但是最低价为16元/支.
(1)求顾客一次至少买多少支,才能以最低价购买?
(2)写出当一次购买x支时(x>10),利润y(元)与购买量x(支)之间的函数关系式;
(3)有一天,一位顾客买了46支,另一位顾客买了50支,专实店发现卖了50支反而比卖46支赚的钱少,为了使每次卖的多赚钱也多,在其他促销条件不变的情况下,最低价16元/支至少要提高到多少,为什么?
详细信息
2. 难度:中等
如图,∠AOB=45°,过OA上到点O的距离分别为1,2,3,4,5 …的点作OA的垂线与OB相交,再按一定规律标出一组如图所示的黑色梯形.设前n个黑色梯形的面积和为Sn
n 1 2 3 …
 Sn    …
(1)请完成上面的表格;
(2)已知Sn与n之间满足一个二次函数关系,试求出这个二次函数的解析式.

manfen5.com 满分网
详细信息
3. 难度:中等
某公司为一工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元).
(1)当每吨售价是240元时,计算此时的月销售量;
(2)求出y与x的函数关系式(不要求写出x的取值范围);
(3)该经销店要获得最大月利润,售价应定为每吨多少元?
(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.
详细信息
4. 难度:中等
杭州休博会期间,嘉年华游乐场投资150万元引进一项大型游乐设施.若不计维修保养费用,预计开放后每月可创收33万元.而该游乐设施开放后,从第1个月到第x个月的维修保养费用累计为y(万元),且y=ax2+bx;若将创收扣除投资和维修保养费用称为游乐场的纯收益g(万元),g也是关于x的二次函数;
(1)若维修保养费用第1个月为2万元,第2个月为4万元.求y关于x的解析式;
(2)求纯收益g关于x的解析式;
(3)问设施开放几个月后,游乐场的纯收益达到最大;几个月后,能收回投资?
详细信息
5. 难度:中等
某商场购进一种单价为40元的篮球,如果以单价50元出售,那么每月可售出500个,根据销售经验,售价每提高1元,销售量相应减少10个;
(1)假设销售单价提高x元,那么销售每个篮球所获得的利润是______元;这种篮球每月的销售量是______个;(用含x的代数式表示)
(2)8000元是否为每月销售这种篮球的最大利润?如果是,请说明理由;如果不是,请求出最大利润,此时篮球的售价应定为多少元?
详细信息
6. 难度:中等
现有边长为180厘米的正方形铁皮,准备将它设计并制成一个开口的水槽,使水槽能通过的水的流量最大.
某校九年级(2)班数学兴趣小组经讨论得出结论:在水流速度一定的情况下,水槽的横截面面积越大,则通过水槽的水的流量越大.为此,他们对水槽的横截面,进行了如下探索:
(1)方案①:把它折成横截面为矩形的水槽,如图.
若∠ABC=90°,设BC=x厘米,该水槽的横截面面积为y厘米2,请你写出y关于x的函数关系式(不必写出x的取值范围),并求出当x取何值时,y的值最大,最大值又是多少?
方案②:把它折成横截面为等腰梯形的水槽,如图.
若∠ABC=1 20°,请你求出该水槽的横截面面积的最大值,并与方案①中的y的最大值比较大小.
(2)假如你是该兴趣小组中的成员,请你再提供一种方案,使你所设计的水槽的横截面面积更大.画出你设计的草图,标上必要的数据(不要求写出解答过程).

manfen5.com 满分网
详细信息
7. 难度:中等
用铝合金型材做一个形状如图1所示的矩形窗框,设窗框的一边为xm,窗户的透光面积为ym2,y与x的函数图象如图2所示.
(1)观察图象,当x为何值时,窗户透光面积最大?
(2)当窗户透光面积最大时,窗框的另一边长是多少?

manfen5.com 满分网
详细信息
8. 难度:中等
某商场将进货价为每个30元的台灯以每个40元出售,平均每月能售出600个.经过调查表明:如果每个台灯的售价每上涨1元,那么其销售数量就将减少10个.为了实现平均每月10000元的销售利润,问每个台灯的售价应定为多少元?
详细信息
9. 难度:中等
某公司年初推出一种高新技术产品,该产品销售的累积利润y(万元)与销售时间x(月)之间的关系(即前x个月的利润总和y与x之间的关系)为y=manfen5.com 满分网x2-2x(x>0).
(1)求出这个函数图象的顶点坐标和对称轴;
(2)请在所给坐标系中,画出这个函数图象的简图;
(3)根据函数图象,你能否判断出公司的这种新产品销售累积利润是从什么时间开始盈利的?
(4)这个公司第6个月所获的利润是多少?

manfen5.com 满分网
详细信息
10. 难度:中等
随着海峡两岸交流日益增强,通过“零关税”进入我市的一种台湾水果,其进货成本是每吨0.5万元,这种水果市场上的销售量y(吨)是每吨的销售价x(万元)的一次函数,且x=0.6时,y=2.4;x=1时,y=2.
(1)求出销售量y(吨)与每吨的销售价x(万元)之间的函数关系式;
(2)若销售利润为w(万元),请写出w与x之间的函数关系式,并求出销售价为每吨2万元时的销售利润.
详细信息
11. 难度:中等
如图,五边形ABCDE为一块土地的示意图.四边形AFDE为矩形,AE=130米,ED=100米,BC截∠F交AF、FD分别于点B、C,且BF=FC=10米.
(1)现要在此土地上划出一块矩形土地NPME作为安置区,且点P在线段BC上,若设PM的长为x米,矩形NPME的面积为y平方米,求y与x的函数关系式,并求当x为何值时,安置区的面积y最大,最大面积为多少?
(2)因三峡库区移民的需要,现要在此最大面积的安置区内安置30户移民农户,每户建房占地100平方米,政府给予每户4万元补助,安置区内除建房外的其余部分每平方米政府投入100元作为基础建设费,在五边形ABCDE这块土地上,除安置区外的部分每平方米政府投入200元作为设施施工费.为减轻政府的财政压力,决定鼓励一批非安置户到此安置区内建房,每户建房占地120平方米,但每户非安置户应向政府交纳土地使用费3万元.为保护环境,建房总面积不得超过安置区面积的50%.若除非安置户交纳的土地使用费外,政府另外投入资金150万元,请问能否将这30户移民农户全部安置?并说明理由.

manfen5.com 满分网
详细信息
12. 难度:中等
小明用科学记算器,结合已经学习的某个函数编了一个计算程序.下表是科学记算器中输入的一些数据和经过该程序计算后计算器显示的相应结果:
 输入-4 -3 -1 3
 显示-5  03-5 -12 
现以输入值作为横坐标,对应的显示值作为纵坐标.
(1)请你在学过的几个常见函数中选择一个,求出这个函数的解析式,使这个函数与小明的计算程序相对应;
(2)画出(1)中所求函数的图象,根据图象写出当计算器中显示值为负数时,计算器的输入值的取值范围.
详细信息
13. 难度:中等
如图,宜昌西陵长江大桥属于抛物线形悬索桥,桥面(视为水平的)与主悬钢索之间用垂直钢拉索连接.桥两端主塔塔顶的海拔高度均是187.5米,桥的单孔跨度(即两主塔之间的距离)900米,这里水面的海拔高度是74米.若过主塔塔顶的主悬钢索(视为抛物线)最低点离桥面(视为直线)的高度为0.5米,桥面离水面的高度为19米.请你计算距离桥两端主塔100米处垂直钢拉索的长.(结果精确到0.1米)
manfen5.com 满分网
详细信息
14. 难度:中等
近几年,被称为“园林城市,生态家园”的宿迁旅游业得到长足的发展,到宿迁观光旅游的客人越来越多,“真如禅寺”景点每天都吸引大量的游客前来观光.事实表明,如果游客过多,不利于保护珍贵文物,为了实施可持续发展,兼顾社会效益和经济效益,该景点拟采取浮动门票价格的方法来控制游客人数.已知每张门票原价为40元,现设浮动门票为每张x元,且40≤x≤70,经市场调研发现一天游览人数y与票价x之间存在着如图所示的一次函数关系.
(1)根据图象,求y与x之间的函数关系式;
(2)设该景点一天的门票收入为W元.
①试用x代数式表示W;
②试问:当门票定为多少时,该景点一天的门票收入最高?最高门票收入是多少?

manfen5.com 满分网
详细信息
15. 难度:中等
某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有黑线的长度和)为10米.当x等于多少米时,窗户的透光面积最大,最大面积是多少?

manfen5.com 满分网
详细信息
16. 难度:中等
如图,隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC为8m,宽AB为2m,以BC所在的直线为x轴,线段BC的中垂线为y轴,建立平面直角坐标系.y轴是抛物线的对称轴,顶点E到坐标原点O的距离为6m.
(1)求抛物线的解析式;
(2)如果该隧道内设双行道,现有一辆货运卡车高4.2m,宽2.4米,这辆货运卡车能否通过该隧道?通过计算说明你的结论.

manfen5.com 满分网
详细信息
17. 难度:中等
某化工厂材料经销公司购进了一种化工原料共7000千克,购进价格为每千克30元,物价部门规定其销售单价不得高于每千克70元,也不得低于每千克30元.市场调查发现;单价定为70元时,每日平均销售60千克;单价每降低1元,每日平均多售出2千克.在销售过程中,每天还要支出其它费用500元(天数不足1天时按整天计算).
(1)每日平均销售可以表示为______
(2)每日平均销售额可以表示为______
(3)每日平均获利可以表示为y=______
(4)当销售单价是______元时,每日平均获利最多,是______元;
(5)若将这种化工原料全部售出,比较每日平均获利最多和销售单价最高这两种销售方式.哪一种获总利润最多?
详细信息
18. 难度:中等
某工厂生产的某种产品按质量分为10个档次,生产第一档次(即最低档次)的产品一天生产76件,每件利润10元,每提高一个档次,利润每件增加2元.
(1)每件利润为16元时,此产品质量在第几档次?
(2)由于生产工序不同,此产品每提高一个档次,一天产量减少4件.若生产第x档的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式;若生产某档次产品一天的总利润为1080元,该工厂生产的是第几档次的产品?
详细信息
19. 难度:中等
现有铝合金窗框料8米,准备用它做一个如图所示的长方形窗架,一般来说,当窗户总面积最大时,窗户的透光最好.那么,要使这个窗户透光最好,窗架的宽应为多少米此时窗户的总面积是多少平方米?

manfen5.com 满分网
详细信息
20. 难度:中等
如图是泰州某河上一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,抛物线两端点与水面的距离都是1m,拱桥的跨度为10m,桥洞与水面的最大距离是5m,桥洞两侧壁上各有一盏距离水面4m的景观灯.若把拱桥的截面图放在平面直角坐标系中(如图).
manfen5.com 满分网manfen5.com 满分网
(1)求抛物线的解析式;(2)求两盏景观灯之间的水平距离.
详细信息
21. 难度:中等
如图,用长为18 m的篱笆(虚线部分),两面靠墙围成矩形的苗圃.
(1)设矩形的一边为x(m),面积为y(m2),求y关于x的函数关系式,并写出自变量x的取值范围;
(2)当x为何值时,所围苗圃的面积最大,最大面积是多少?

manfen5.com 满分网
详细信息
22. 难度:中等
如图,一个中学生推铅球,铅球在点A处出手,在点B处落地,它的运行路线是一条抛物线,在平面直角坐标系中,这条抛物线的解析式为:y=manfen5.com 满分网x2+manfen5.com 满分网x+manfen5.com 满分网
(1)请用配方法把y=-manfen5.com 满分网x2+manfen5.com 满分网x+manfen5.com 满分网化成y=a(x-h)2+k的形式.
(2)求出铅球在运行过程中到达最高点时离地面的距离和这个学生推铅球的成绩.(单位:米)

manfen5.com 满分网
详细信息
23. 难度:中等
农民张大伯为了致富奔小康,大力发展家庭养殖业.他准备用40m长的木栏围一个矩形的羊圈,为了节约材料同时要使矩形的面积最大,他利用了自家房屋一面长25m的墙,设计了如图一个矩形的羊圈.
(1)请你求出张大伯矩形羊圈的面积;
(2)请你判断他的设计方案是否合理?如果合理,直接答合理;如果不合理又该如何设计并说明理由.

manfen5.com 满分网
详细信息
24. 难度:中等
如图,在矩形ABCD中,AB=6米,BC=8米,动点P以2米/秒的速度从点A出发,沿AC向点C移动,同时动点Q以1米/秒的速度从点C出发,沿CB向点B移动,设P、Q两点移动t秒(0<t<5)后,四边形ABQP的面积为S米2
(1)求面积S与时间t的关系式;
(2)在P、Q两点移动的过程中,四边形ABQP与△CPQ的面积能否相等?若能,求出此时点P的位置;若不能,请说明理由.

manfen5.com 满分网
详细信息
25. 难度:中等
某校八年级(1)班共有学生50人,据统计原来每人每年用于购买饮料的平均支出是a元.经测算和市场调查,若该班学生集体改饮某品牌的桶装纯净水,则年总费用由两部分组成,一部分是购买纯净水的费用,另一部分是其它费用780元,其中,纯净水的销售价x(元/桶)与年购买总量y(桶)之间满足如图所示关系.
(1)求y与x的函数关系式;
(2)若该班每年需要纯净水380桶,且a为120时,请你根据提供的信息分析一下:该班学生集体改饮桶装纯净水与个人买饮料,哪一种花钱更少?
(3)当a至少为多少时,该班学生集体改饮桶装纯净水一定合算从计算结果看,你有何感想?(不超过30字)

manfen5.com 满分网
详细信息
26. 难度:中等
manfen5.com 满分网某公司2005年1-3月的月利润y(万元)与月份x之间的关系如图所示.图中的折线可近似看作是抛物线的一部分.
(1)根据图象提供的信息,求出过A、B、C三点的二次函数关系式;
(2)公司开展技术革新活动,定下目标:今年6月份的利润仍以图中抛物线的上升趋势上升.6月份公司预计将达到多少万元?
(3)如果公司1月份的利润率为13%,以后逐月增加1个百分点.已知6月上旬平均每日实际销售收入为3.6万元,照此推算6月份公司的利润是否会超过(2)中所确定的目标?
(成本总价=利润利润率,销售收入=成本总价+利润)
详细信息
27. 难度:中等
有一个抛物线形的拱形隧道,隧道的最大高度为6m,跨度为8m,把它放在如图所示的平面直角坐标系中.
(1)求这条抛物线所对应的函数关系式;
(2)若要在隧道壁上点P(如图)安装一盏照明灯,灯离地面高4.5m.求灯与点B的距离.

manfen5.com 满分网
详细信息
28. 难度:中等
东海体育用品商场为了推销某一运动服,先做了市场调查,得到数据如下表:
卖出价格x(元/件)50515253
销售量p(件)500490480470
(1)以x作为点的横坐标,p作为纵坐标,把表中的数据,在图中的直角坐标系中描出相应的点,观察连接各点所得的图形,判断p与x的函数关系式;
(2)如果这种运动服的买入价为每件40元,试求销售利润y(元)与卖出价格x(元/件)的函数关系式(销售利润=销售收入-买入支出);
(3)在(2)的条件下,当卖出价为多少时,能获得最大利润?

manfen5.com 满分网
详细信息
29. 难度:中等
如图,一张边长为16cm的正方形硬纸板,把它的四个角都剪去一个边长为xcm的小正方形,然后把它折成一个无盖的长方体,设长方体的容积为Vcm3,请回答下列问题:
(1)若用含有X的代数式表示V,则V=______
(2)完成下表:
manfen5.com 满分网
(3)观察上表,容积V的值是否随x值得增大而增大?当x取什么值时,容积V的值最大?

manfen5.com 满分网
详细信息
30. 难度:中等
用总长为32m的篱笆墙围成一个扇形的花园.
(1)试写出扇形花园的面积y(m2)与半径x(m)之间的函数关系式和自变量x的取值范围;
(2)用描点法作出函数的图象;
(3)当扇形花园半径为多少时,花园面积最大?最大面积是多少?此时这个扇形的圆心角是多大(精确到0.1度)?
(4)请回答:如果同样用32m的篱笆围成一个面积最大的矩形花园,这个花园的面积是多少?对比上面的结论,你有什么发现?
Copyright @ 2008-2013 满分5 学习网 ManFen5.COM. All Rights Reserved.