1. 难度:中等 | |
某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件.市场调查反映:如果每件的售价每涨1元(售价每件不能高于45元),那么每星期少卖10件.设每件涨价x元(x为非负整数),每星期的销量为y件. (1)求y与x的函数关系式及自变量x的取值范围; (2)如何定价才能使每星期的利润最大且每星期的销量较大?每星期的最大利润是多少? |
2. 难度:中等 | |
某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植-亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z与x之间也大致满足如图2所示的一次函数关系. (1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少? (2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式; (3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值. |
3. 难度:中等 | |
王亮同学善于改进学习方法,他发现对解题过程进行回顾反思,效果会更好.某一天他利用30分钟时间进行自主学习.假设他用于解题的时间x(单位:分钟)与学习收益量y的关系如图甲所示,用于回顾反思的时间x(单位:分钟)与学习收益量y的关系如图乙所示(其中OA是抛物线的一部分,A为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间. (1)求王亮解题的学习收益量y与用于解题的时间x之间的函数关系式,并写出自变量x的取值范围; (2)求王亮回顾反思的学习收益量y与用于回顾反思的时间x之间的函数关系式; (3)王亮如何分配解题和回顾反思的时间,才能使这30分钟的学习收益总量最大? (学习收益总量=解题的学习收益量+回顾反思的学习收益量) |
4. 难度:中等 | |
某服装公司试销一种成本为每件50元的T恤衫,规定试销时的销售单价不低于成本价,又不高于每件70元,试销中销售量y(件)与销售单价x(元)的关系可以近似的看作一次函数(如图). (1)求y与x之间的函数关系式; (2)设公司获得的总利润(总利润=总销售额-总成本)为P元,求P与x之间的函数关系式,并写出自变量x的取值范围;根据题意判断:当x取何值时,P的值最大,最大值是多少? |
5. 难度:中等 | |
枇杷是莆田名果之一,某果园有100棵枇杷树.每棵平均产量为40千克,现准备多种一些枇杷树以提高产量,但是如果多种树,那么树与树之间的距离和每一棵数接受的阳光就会减少,根据实践经验,每多种一棵树,投产后果园中所有的枇杷树平均每棵就会减少产量0.25千克,问:增种多少棵枇杷树,投产后可以使果园枇杷的总产量最多?最多总产量是多少千克? |
6. 难度:中等 | |
随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1与投资量x成正比例关系,如图①所示;种植花卉的利润y2与投资量x成二次函数关系,如图②所示(注:利润与投资量的单位:万元) (1)分别求出利润y1与y2关于投资量x的函数关系式; (2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润,他能获取的最大利润是多少? |
7. 难度:中等 | |||||||||||||||
我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:
(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价) (3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大? |
8. 难度:中等 | |
如图,把一张长10cm,宽8cm的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计). (1)要使长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少; (2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由; (3)如果把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由. |
9. 难度:中等 | |
一座拱桥的轮廓是抛物线型(如图1),拱高6m,跨度20m,相邻两支柱间的距离均为5m. (1)将抛物线放在所给的直角坐标系中(如图2),求抛物线的解析式; (2)求支柱EF的长度; (3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由. |
10. 难度:中等 | |
某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.4米的正方形ABCD,点E、F分别在边BC和CD上,△CFE、△ABE和四边形AEFD均由单一材料制成,制成△CFE、△ABE和四边形AEFD的三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH. (1)判断图(2)中四边形EFGH是何形状,并说明理由; (2)E、F在什么位置时,定制这批地砖所需的材料费用最省? |
11. 难度:中等 | |
跳绳时,绳甩到最高处时的形状是抛物线.正在甩绳的甲、乙两名同学拿绳的手间距AB为6米,到地面的距离AO和BD均为0.9米,身高为1.4米的小丽站在距点O的水平距离为1米的点F处,绳子甩到最高处时刚好通过她的头顶点E.以点O为原点建立如图所示的平面直角坐标系,设此抛物线的解析式为y=ax2+bx+0.9. (1)求该抛物线的解析式; (2)如果小华站在OD之间,且离点O的距离为3米,当绳子甩到最高处时刚好通过他的头顶,请你算出小华的身高; (3)如果身高为1.4米的小丽站在OD之间,且离点O的距离为t米,绳子甩到最高处时超过她的头顶,请结合图象,写出t的取值范围______. |
12. 难度:中等 | |
四川汶川大地震发生后,我市某工厂A车间接到生产一批帐篷的订单,要求必须在12天(含12天)内完成.已知每顶帐篷的成本价为800元,该车间平时每天能生产帐篷20顶.为了加快进度,车间采取工人分批日夜加班,机器满负荷运转的生产方式,生产效率得到了提高.这样,第一天生产了22顶,以后每天生产的帐篷都比前一天多2顶.由于机器损耗等原因,当每天生产的帐篷达到30顶后,每增加1顶帐篷,当天生产的所有帐篷,平均每顶的成本就增加20元.设生产这批帐篷的时间为x天,每天生产的帐篷为y顶. (1)直接写出y与x之间的函数关系式,并写出自变量x的取值范围. (2)若这批帐篷的订购价格为每顶1200元,该车间决定把获得最高利润的那一天的全部利润捐献给灾区.设该车间每天的利润为W元,试求出W与x之间的函数关系式,并求出该项车间捐献给灾区多少钱? |
13. 难度:中等 | |
研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x(吨)时,所需的全部费用y(万元)与x满足关系式y=x2+5x+90,投入市场后当年能全部售出,且在甲、乙两地每吨的售价p甲,p乙(万元)均与x满足一次函数关系.(注:年利润=年销售额-全部费用) (1)成果表明,在甲地生产并销售x吨时,P甲=-x+14,请你用含x的代数式表示甲地当年的年销售额,并求年利润W甲(万元)与x之间的函数关系式; (2)成果表明,在乙地生产并销售x吨时,P乙=-+n(n为常数),且在乙地当年的最大年利润为35万元.试确定n的值; (3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润? 参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是. |
14. 难度:中等 | |
小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化. (1)求S与x之间的函数关系式,并写出自变量x的取值范围; (2)当x是多少时,矩形场地面积S最大,最大面积是多少? |
15. 难度:中等 | |
某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用. 设每个房间每天的定价增加x元.求: (1)房间每天的入住量y(间)关于x(元)的函数关系式; (2)该宾馆每天的房间收费z(元)关于x(元)的函数关系式; (3)该宾馆客房部每天的利润w(元)关于x(元)的函数关系式;当每个房间的定价为每天多少元时,w有最大值?最大值是多少? |
16. 难度:中等 | |
如图,某隧道横截面的上下轮廓线分别由抛物线对称的一部分和矩形的一部分构成,最大高度为6米,底部宽度为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系. (1)直接写出点M及抛物线顶点P的坐标; (2)求出这条抛物线的函数解析式; (3)若要搭建一个矩形“支撑架”AD+DC+CB,使C、D点在抛物线上,A、B点在地面OM上,这个“支撑架”总长的最大值是多少? |
17. 难度:中等 | |
为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元). (1)求y与x之间的函数关系式; (2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少? (3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元? |
18. 难度:中等 | |
如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半. (1)求足球开始飞出到第一次落地时,该抛物线的表达式. (2)足球第一次落地点C距守门员多少米?(取4=7) (3)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取=5) |
19. 难度:中等 | |
杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线y=x2+3x+1的一部分,如图所示. (1)求演员弹跳离地面的最大高度; (2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?请说明理由. |
20. 难度:中等 | |
某种爆竹点燃后,其上升高度h(米)和时间t(秒)符合关系式h=vt+gt2(0<t≤2),其中重力加速度g以10米/秒2计算.这种爆竹点燃后以v=20米/秒的初速度上升.(上升过程中,重力加速度g为-10米/秒2;下降过程中,重力加速度g为10米/秒2) (1)这种爆竹在地面上点燃后,经过多少时间离地15米? (2)在爆竹点燃后的1.5秒至1.8秒这段时间内,判断爆竹是上升,或是下降,并说明理由. |
21. 难度:中等 | |
善于不断改进学习方法的小迪发现,对解题进行回顾反思,学习效果更好.某一天小迪有20分钟时间可用于学习.假设小迪用于解题的时间x(单位:分钟)与学习收益量y的关系如图1所示,用于回顾反思的时间x(单位:分钟)与学习收益y的关系如图2所示(其中OA是抛物线的一部分,A为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间. (1)求小迪解题的学习收益量y与用于解题的时间x之间的函数关系式; (2)求小迪回顾反思的学习收益量y与用于回顾反思的时间x的函数关系式; (3)问小迪如何分配解题和回顾反思的时间,才能使这20分钟的学习收益总量最 大? |
22. 难度:中等 | |
某农户计划利用现有的一面墙再修四面墙,建造如图所示的长方体水池,培育不同品种的鱼苗.他已备足可以修高为1.5m、长18m的墙的材料准备施工,设图中与现有一面墙垂直的三面墙的长度都为xm,即AD=EF=BC=xm.(不考虑墙的厚度) (1)若想水池的总容积为36m3,x应等于多少? (2)求水池的总容积V与x的函数关系式,并直接写出x的取值范围; (3)若想使水池的总容积V最大,x应为多少?最大容积是多少? |
23. 难度:中等 | |
为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40m的栅栏围住(如图4).若设绿化带的BC边长为xm,绿化带的面积为ym2. (1)求y与x之间的函数关系式,并写出自变量x的取值范围; (2)当x为何值时,满足条件的绿化带的面积最大. |
24. 难度:中等 | |
如图,在Rt△ABC中,∠A=90°,AB=8,AC=6.若动点D从点B出发,沿线段BA运动到点A为止,运动速度为每秒2个单位长度.过点D作DE∥BC交AC于点E,设动点D运动的时间为x秒,AE的长为y. (1)求出y关于x的函数关系式,并写出自变量x的取值范围; (2)求出△BDE的面积S与x之间的函数关系式; (3)当x为何值时,△BDE的面积S有最大值,最大值为多少? |
25. 难度:中等 | |
某小区有一长100m,宽80m的空地,现将其建成花园广场,设计图案如下,阴影区域为绿化区(四块绿化区是全等矩形),空白区域为活动区,且四周出口一样宽,宽度不小于50m,不大于60m.预计活动区每平方米造价60元,绿化区每平方米造价50元.设每块绿化区的长边为x m,短边为y m,工程总造价为w元. (1)写出x的取值范围; (2)写出y与x的函数关系式; (3)写出w与x的函数关系式; (4)如果小区投资46.9万元,问能否完成工程任务?若能,请写出x为整数的所有工程方案;若不能,请说明理由.(参考数据:≈1.732) |
26. 难度:中等 | |
某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱. (1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式. (2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式. (3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少? |
27. 难度:中等 | |
司机在驾驶汽车时,发现紧急情况到踩下刹车需要一段时间,这段时间叫反应时间.之后还会继续行驶一段距离.我们把司机从发现紧急情况到汽车停止所行驶的这段距离叫“刹车距离”(如图). 已知汽车的刹车距离s(单位:m)与车速v(单位:m/s)之同有如下关系:s=tv+kv2其中t为司机的反应时间(单位:s),k为制动系数.某机构为测试司机饮酒后刹车距离的变化,对某种型号的汽车进行了“醉汉”驾车测试,已知该型号汽车的制动系数k=0.08,并测得志愿者在未饮酒时的反应时间t=0.7s (1)若志愿者未饮酒,且车速为11m/s,则该汽车的刹车距离为多少m(精确到0.1m); (2)当志愿者在喝下一瓶啤酒半小时后,以17m/s的速度驾车行驶,测得刹车距离为46m.假如该志愿者当初是以11m/s的车速行驶,则刹车距离将比未饮酒时增加多少?(精确到0.1m) (3)假如你以后驾驶该型号的汽车以11m/s至17m/s的速度行驶,且与前方车辆的车距保持在40m至50m之间.若发现前方车辆突然停止,为防止“追尾”.则你的反应时间应不超过多少秒?(精确到0.01s) |
28. 难度:中等 | |
某企业信息部进行市场调研发现: 信息一:如果单独投资A种产品,则所获利润yA(万元)与投资金额x(万元)之间存在正比例函数关系:yA=kx,并且当投资5万元时,可获利润2万元; 信息二:如果单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间存在二次函数关系:yB=ax2+bx,并且当投资2万元时,可获利润2.4万元;当投资4万元,可获利润3.2万元. (1)请分别求出上述的正比例函数表达式与二次函数表达式; (2)如果企业同时对A、B两种产品共投资10万元,请你设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少? |
29. 难度:中等 | |
工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等. (1)该工艺品每件的进价、标价分别是多少元? (2)若每件工艺品按(1)中求得的进价进货,标价售出,工艺商场每天可售出该工艺品100件.若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元? |
30. 难度:中等 | |
王师傅有两块板材边角料,其中一块是边长为60cm的正方形板子;另一块是上底为30cm,下底为120cm,高为60cm的直角梯形板子(如图①).王师傅想将这两块板子裁成两块全等的矩形板材.他将两块板子叠放在一起,使梯形的两个直角顶点分别与正方形的两个顶点重合,两块板子的重叠部分为五边形ABCFE围成的区域(如图②).由于受材料纹理的限制,要求裁出的矩形要以点B为一个顶点. (1)求FC的长; (2)利用图②求出矩形顶点B所对的顶点到BC边的距离x(cm)为多少时,矩形的面积y(cm2)最大?最大面积是多少? (3)若想使裁出的矩形为正方形,试求出面积最大的正方形的边长. |