相关试卷
当前位置:首页 > 初中数学试卷 > 试卷信息
第21章《解直角三角形》中考题集(20):21.4 解直角三角形(解析版)
一、填空题
详细信息
1. 难度:中等
如图,△ABC中,AB=AC,∠A=45°,AC的垂直平分线分别交AB,AC于D,E两点,连接CD.如果AD=1,那么tan∠BCD=   
manfen5.com 满分网
详细信息
2. 难度:中等
如图,如果△APB绕点B按逆时针方向旋转30°后得到△A′P′B,且BP=2,那么PP′的长为    .(不取近似值.以下数据供解题使用:sin15°=manfen5.com 满分网,cos15°=manfen5.com 满分网
manfen5.com 满分网
详细信息
3. 难度:中等
在△ABC中,∠C=90°,BC=3,tan∠B=manfen5.com 满分网,则AC=   
详细信息
4. 难度:中等
如图1,将射线OX按逆时针方向旋转角,得到射线OY,如果点P为射线OY上一点,且OP=a,那么我们规定用(α,β)表示点P在平面内的位置,并记为P(α,β).例如图2中,如果OM=8,XOM=100°,那么点M在平面内的位置记为M(8,100°),据此回答下列问题:
(1)在图3中,如果点N在平面内的位置内的位置记为N(6,30°),那么ON=    ,∠XON=    度.(此问得分按一空算)
(2)图4中,若点A、B在平面内的位置分别计为A(4,45°)、B(4manfen5.com 满分网,75°),则线段AB长为   
manfen5.com 满分网
详细信息
5. 难度:中等
在△ABC中,∠C=60°,AB=5,BC=5,那么sinA等于   
详细信息
6. 难度:中等
⊙O的半径OA=2,弦AB、AC的长分别为一元二次方程x2-(2manfen5.com 满分网+2manfen5.com 满分网)x+4manfen5.com 满分网=0的两个根,则∠BAC的度数为   
详细信息
7. 难度:中等
如图,Rt△ABC中,∠A=30°,AC=manfen5.com 满分网,则AB=   
manfen5.com 满分网
二、解答题
详细信息
8. 难度:中等
已知关于x的方程x2-2(m-1)x+m2-3=0有两个不相等的实数根.
(1)求实数m的取值范围;
(2)已知a、b、c分别是△ABC的内角∠A、∠B、∠C的对边,∠C=90°,且tanB=manfen5.com 满分网,c-b=4,若方程的两个实数根的平方和等于△ABC的斜边c的平方,求m的值.
详细信息
9. 难度:中等
如图,在平面直角坐标系中,两个全等的直角三角形的直角顶点及一条直角边重合,点A在第二象限内,点B、点C在x轴的负半轴上,∠CAO=30°,OA=4.
(1)求点C的坐标;
(2)如图,将△ACB绕点C按顺时针方向旋转30°到△A′CB′的位置,其中A’C交直线OA于点E,A’B’分别交直线OA、CA于点F、G,则除△A′B′C≌△AOC外,还有哪几对全等的三角形,请直接写出答案;(不再另外添加辅助线)
(3)在(2)的基础上,将△A′CB′绕点C按顺时针方向继续旋转,当△COE的面积为manfen5.com 满分网时,求直线CE的函数表达式.
manfen5.com 满分网
详细信息
10. 难度:中等
如图,在平面直角坐标系中,点A在第一象限,点B的坐标为(3,0),OA=2,∠AOB=60°.
(1)求点A的坐标;
(2)若直线AB交y轴于点C,求△AOC的面积.

manfen5.com 满分网
详细信息
11. 难度:中等
如图,A、B、C表示建筑在一座比较险峻的名山上的三个缆车站的位置,AB、BC表示连接三个缆车站的钢缆.已知A、B、C所处位置的海拔高度分别为124m、400m、1000m,如图建立直角坐标系,即A(a,124)、B(b,400),C(c,1100),若直线AB的解析式为y=manfen5.com 满分网x+4,直线BC与水平线BC1的交角为45度.
(1)分别求出A、B、C三个缆车站所在位置的坐标;
(2)求缆车从B站出发到达C站单向运行的距离.(精确到1m).

manfen5.com 满分网
详细信息
12. 难度:中等
从甲、乙两题中选做一题即可.如果两题都做,只以甲题计分.
题甲:如图,反比例函数manfen5.com 满分网的图象与一次函数y=mx+b的图象交于A(1,3),B(n,-1)两点.
(1)求反比例函数与一次函数的解析式;
(2)根据图象回答:当x取何值时,反比例函数的值大于一次函数的值.

题乙:如图,在矩形ABCD中,AB=4,AD=10.直角尺的直角顶点P在AD上滑动时(点P与A,D不重合),一直角边经过点C,另一直角边AB交于点E.我们知道,结论“Rt△AEP∽Rt△DPC”成立.
(1)当∠CPD=30°时,求AE的长;
(2)是否存在这样的点P,使△DPC的周长等于△AEP周长的2倍?若存在,求出DP的长;若不存在,请说明理由.
我选做的是______

manfen5.com 满分网 manfen5.com 满分网
详细信息
13. 难度:中等
已知直角梯形纸片OABC在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A(10,0),B(8,2manfen5.com 满分网),C(0,2manfen5.com 满分网),点T在线段OA上(不与线段端点重合),将纸片折叠,使点A落在射线AB上(记为点A′),折痕经过点T,折痕TP与射线AB交于点P,设点T的横坐标为t,折叠后纸片重叠部分(图中的阴影部分)的面积为S.
(1)求∠OAB的度数,并求当点A′在线段AB上时,S关于t的函数关系式;
(2)当纸片重叠部分的图形是四边形时,求t的取值范围;
(3)S存在最大值吗?若存在,求出这个最大值,并求此时t的值;若不存在,请说明理由.
manfen5.com 满分网
详细信息
14. 难度:中等
在矩形ABCD中,点E是AD边上一点,连接BE,且∠ABE=30°,BE=DE,连接BD.点P从点E出发沿射线ED运动,过点P作PQ∥BD交直线BE于点Q.
(1)当点P在线段ED上时(如图1),求证:BE=PD+manfen5.com 满分网PQ;
(2)若BC=6,设PQ长为x,以P、Q、D三点为顶点所构成的三角形面积为y,求y与x的函数关系式(不要求写出自变量x的取值范围);
(3)在②的条件下,当点P运动到线段ED的中点时,连接QC,过点P作PF⊥QC,垂足为F,PF交对角线BD于点G(如图2),求线段PG的长.
manfen5.com 满分网
详细信息
15. 难度:中等
将一个正方形纸板(如图-)沿虚线剪下,得到七块几何图形的纸板(其中①③⑤⑥⑦是等腰直角三角形,②是正方形)我们把这七块纸板叫做七巧板.现用七巧板拼出一个图形,其空隙部分是一个箭头(如图二).
manfen5.com 满分网
(1)请在图二中用实线画出拼图的痕迹(如实线DP);
(2)如果图一中大正方形纸板的边长为10,计算图二中“箭头”的面积(即封闭平面图形ABCDEFG的面积).
详细信息
16. 难度:中等
如图,已知线段AB,分别以A、B为圆心,大于manfen5.com 满分网AB长为半径画弧,两弧相交于点C、Q,连接CQ与AB相交于点D,连接AC,BC.那么:
(1)∠ADC=______度;
(2)当线段AB=4,∠ACB=60°时,∠ACD=30度,△ABC的面积等于______

manfen5.com 满分网
详细信息
17. 难度:中等
如图,已知P为∠AOB的边OA上的一点,以P为顶点的∠MPN的两边分别交射线OB于M、N两点,且∠MPN=∠AOB=α(α为锐角).当∠MPN以点P为旋转中心,PM边与PO重合的位置开始,按逆时针方向旋转(∠MPN保持不变)时,M、N两点在射线OB上同时以不同的速度向右平行移动.设OM=x,ON=y(y>x>0),△POM的面积为S.若sinα=manfen5.com 满分网,OP=2.
(1)当∠MPN旋转30°(即∠OPM=30°)时,求点N移动的距离;
(2)求证:△OPN∽△PMN;
(3)写出y与x之间的关系式;
(4)试写出S随x变化的函数关系式,并确定S的取值范围.

manfen5.com 满分网
详细信息
18. 难度:中等
已知:等边△ABC的边长为a.
探究(1):如图1,过等边△ABC的顶点A、B、C依次作AB、BC、CA的垂线围成△MNG,求证:△MNG是等边三角形且MN=manfen5.com 满分网a;
探究(2):在等边△ABC内取一点O,过点O分别作OD⊥AB、OE⊥BC、OF⊥CA,垂足分别为点D、E、F.
①如图2,若点O是△ABC的重心,我们可利用三角形面积公式及等边三角形性质得到两个正确结论(不必证明):结论1. OD+OE+OF=manfen5.com 满分网a;结论2. AD+BE+CF=manfen5.com 满分网a;
②如图3,若点O是等边△ABC内任意一点,则上述结论1,2是否仍然成立?如果成立,请给予证明;如果不成立,请说明理由.
manfen5.com 满分网
详细信息
19. 难度:中等
在△ABC中,∠A、∠B、∠C所对的边分别用a、b、c表示.
(1)如图,在△ABC中,∠A=2∠B,且∠A=60度.求证:a2=b(b+c).
manfen5.com 满分网
(2)如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为“倍角三角形”.第一问中的三角形是一个特殊的倍角三角形,那么对于任意的倍角三角形ABC,其中∠A=2∠B,关系式a2=b(b+c)是否仍然成立?并证明你的结论.
manfen5.com 满分网
(3)试求出一个倍角三角形的三条边的长,使这三条边长恰为三个连续的正整数.
详细信息
20. 难度:中等
已知平行四边形ABCD中,对角线AC和BD相交于点O,AC=10,BD=8.
(1)若AC⊥BD,试求四边形ABCD的面积;
(2)若AC与BD的夹角∠AOD=60°,求四边形ABCD的面积;
(3)试讨论:若把题目中“平行四边形ABCD”改为“四边形ABCD”,且∠AOD=θ,AC=a,BD=b,试求四边形ABCD的面积(用含θ,a,b的代数式表示).

manfen5.com 满分网
详细信息
21. 难度:中等
已知平行四边形ABCD,AD=a,AB=b,∠ABC=α.点F为线段BC上一点(端点B,C除外),连接AF,AC,连接DF,并延长DF交AB的延长线于点E,连接CE.
(1)当F为BC的中点时,求证:△EFC与△ABF的面积相等;
(2)当F为BC上任意一点时,△EFC与△ABF的面积还相等吗?说明理由.

manfen5.com 满分网
详细信息
22. 难度:中等
在边长为6的菱形ABCD中,动点M从点A出发,沿A⇒B⇒C向终点C运动,连接DM交AC于点N.
manfen5.com 满分网
(1)如图1,当点M在AB边上时,连接BN:
①求证:△ABN≌△ADN;
②若∠ABC=60°,AM=4,∠ABN=α,求点M到AD的距离及tanα的值.
(2)如图2,若∠ABC=90°,记点M运动所经过的路程为x(6≤x≤12).试问:x为何值时,△ADN为等腰三角形.
详细信息
23. 难度:中等
学校植物园沿路护栏纹饰部分设计成若干个全等菱形图案,每增加一个菱形图案,纹饰长度就增加dcm,如图所示.已知每个菱形图案的边长manfen5.com 满分网cm,其一个内角为60度.
(1)若d=26,则该纹饰要231个菱形图案,求纹饰的长度L;
(2)当d=20时,若保持(1)中纹饰长度不变,则需要多少个这样的菱形图案?
manfen5.com 满分网
详细信息
24. 难度:中等
如图,菱形ABCD的边长为2,BD=2,E、F分别是边AD,CD上的两个动点,且满足AE+CF=2.
(1)求证:△BDE≌△BCF;
(2)判断△BEF的形状,并说明理由;
(3)设△BEF的面积为S,求S的取值范围.

manfen5.com 满分网
详细信息
25. 难度:中等
如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.
(1)求证:四边形BCEF是菱形;
(2)若CE=4,∠BCF=130°,求菱形BCEF的面积.(结果保留三个有效数字)

manfen5.com 满分网
详细信息
26. 难度:中等
如图,在梯形ABCD中,AB∥DC,过对角线AC的中点O作EF⊥AC,分别交边AB、CD于点E、F,连接CE、AF.
(1)求证:四边形AECF是菱形;
(2)若EF=4,tan∠OAE=manfen5.com 满分网,求四边形AECF的面积.

manfen5.com 满分网
详细信息
27. 难度:中等
已知:如图,在平行四边形ABCD中,E是AD的中点,连接BE、CE,∠BEC=90°.
(1)求证:BE平分∠ABC;
(2)若EC=4,且manfen5.com 满分网,求四边形ABCE的面积.

manfen5.com 满分网
详细信息
28. 难度:中等
如图,在矩形ABCD中,E是BC边上的点,AE=BC,DF⊥AE,垂足为F,连接DE.
(1)求证:△ABE≌△DFA;
(2)如果AD=10,AB=6,求sin∠EDF的值.

manfen5.com 满分网
详细信息
29. 难度:中等
如图1,正方形ABCD和正三角形EFG的边长都为1,点E,F分别在线段AB,AD上滑动,设点G到CD的距离为x,到BC的距离为y,记∠HEF为α(当点E,F分别与B,A重合时,记α=0°).
(1)当α=0°时(如图2所示),求x,y的值(结果保留根号);
(2)当α为何值时,点G落在对角形AC上?请说出你的理由,并求出此时x,y的值(结果保留根号);
(3)请你补充完成下表(精确到0.01):
α15°30°45°60°75°90°
x0.030.29
y0.290.130.03
(4)若将“点E,F分别在线段AB,AD上滑动”改为“点E,F分别在正方形ABCD边上滑动”.当滑动一周时,请使用(3)的结果,在图4中描出部分点后,勾画出点G运动所形成的大致图形.
(参考数据:manfen5.com 满分网≈1.732,sin15°=manfen5.com 满分网≈0.259,sin75°=manfen5.com 满分网≈0.966)
manfen5.com 满分网manfen5.com 满分网
详细信息
30. 难度:中等
已知:如图,P是正方形ABCD内一点,在正方形ABCD外有一点E,满足∠ABE=∠CBP,BE=BP.
(1)求证:△CPB≌△AEB;
(2)求证:PB⊥BE;
(3)若PA:PB=1:2,∠APB=135°,求cos∠PAE的值.

manfen5.com 满分网
Copyright @ 2008-2013 满分5 学习网 ManFen5.COM. All Rights Reserved.