第21章《解直角三角形》中考题集(35):21.5 应用举例(解析版)
一、解答题
|
详细信息
|
1. 难度:中等 |
如图,小唐同学正在操场上放风筝,风筝从A处起飞,几分钟后便飞达C处,此时,在AQ延长线上B处的小宋同学,发现自己的位置与风筝和旗杆PQ的顶点P在同一直线上. (1)已知旗杆高为10米,若在B处测得旗杆顶点P的仰角为30°,A处测得点P的仰角为45°,试求A,B之间的距离; (2)此时,在A处背向旗杆又测得风筝的仰角为75°,若绳子在空中视为一条线段,求绳子AC约为多少?(结果可保留根号)
|
|
详细信息
|
2. 难度:中等 |
如图,小明家住16楼,楼前有一条河.小明在阳台距离地面50米的A点(AD=50m)分别看向河的两岸(B点和C点),测得俯角分别是45°与30°,请你求出河宽是多少?(精确到0.1米)
|
|
详细信息
|
3. 难度:中等 |
如图所示,课外活动中,小明在离旗杆AB 10米的C处,用测角仪测得旗杆顶部A的仰角为40°,已知测角仪器的高CD=1.5米,求旗杆AB的高.(精确到0.1米) (供选用的数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)
|
|
详细信息
|
4. 难度:中等 |
小王站在D点测量学校旗杆顶点A的仰角∠AEC=33°,小王与旗杆的水平距离BD=10m,眼睛与地面的高度ED=1.6m,求旗杆AB的高度(精确到0.1米)
|
|
详细信息
|
7. 难度:中等 |
如图,为了测量电线杆的高度AB,在离电线杆25米的D处,用高1.20米的测角仪CD测得电线杆顶端A的仰角α=22°,求电线杆AB的高.(精确到0.1米)(参考数据:sin22°=0.3746,cos22°=0.9272,tan22°=0.4040,cot22°=2.4751)
|
|
详细信息
|
8. 难度:中等 |
如图,某幢大楼顶部有一块广告牌CD,甲乙两人分别在相距8米的A、B两处测得D点和C点的仰角分别为45°和60°,且A、B、E三点在一条直线上,若BE=15米,求这块广告牌的高度.(取≈1.73,计算结果保留整数)
|
|
详细信息
|
9. 难度:中等 |
某校九年级(2)班在测量校内旗杆高度的数学活动中,第一组的同学设计了两种测量方案,并根据测量结果填写了如下《数学活动报告》中的一部分.
课题 | 测量校内旗杆高度 | 目的 | 运用所学数学知识及数学方法解决实际问题---测量旗杆高度 | 方案 | 方案一 | 方案二 | 方案三 |
示意图 | | | | 测量工具 | 皮尺、测角仪 | 皮尺、测角仪 | | 测量数据 | AM=1.5m,AB=10m ∠α=30°,∠β=60° | AM=1.5m,AB=20m ∠α=30°,∠β=60° | | 计算过程(结 果保留根号) | 【解析】
| 【解析】
| | (1)请你在方案一二中任选一种方案(多选不加分),根据方案提供的示意图及相关数据填写表中的计算过程、测量结果; (2)请你根据所学的知识,再设计一种不同于方案一、二的测量方案三,并完成表格中方案三的所有栏目的填写.(要求:在示意图中标出所需的测量数据长度用字母a,b,c…表示,角度用字母α,β,γ…表示)
|
|
详细信息
|
12. 难度:中等 |
2008年初,我国南方部分省区发生了雪灾,造成通讯受阴.如图,现有某处山坡上一座发射塔被冰雪从C处压折,塔尖恰好落在坡面上的点B处,在B处测得点C的仰角为38°,塔基A的俯角为21°,又测得斜坡上点A到点B的坡面距离AB为15米,求折断前发射塔的高.(精确到0.1米)
|
|
详细信息
|
13. 难度:中等 |
某数学课外小组测量金湖广场的五象泉雕塑CD的高度,他们在地面A处测得雕塑顶部D的仰角为30°,再往雕塑底部C的方向前进18米至B处,测得仰角为45°(如图所示),请求出五象泉雕塑CD的高度.(精确到0.01米)
|
|
详细信息
|
14. 难度:中等 |
如图,山顶建有一座铁塔,塔高CD=30m,某人在点A处测得塔底C的仰角为20°,塔顶D的仰角为23°,求此人距CD的水平距离AB.(参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364,sin23°≈0.391,cos23°≈0.921,tan23°≈0.424)
|
|
详细信息
|
16. 难度:中等 |
如图,小山的顶部是一块平地DE,在这块平地上有一高压输电的铁架AE,小山的斜坡BD的坡度i=1:,斜坡BD的长是50米,在山块的坡底B处测得铁架顶端A的仰角为45°,在山坡坡顶D处测得铁架顶端A的仰角为60°,求铁架AE的高度.(答案可带根号)
|
|
详细信息
|
18. 难度:中等 |
如图,山脚下有一棵树AB,小华从点B沿山坡向上走50米到达点D,用高为1.5米的测角仪CD测得树顶的仰角为10°,已知山坡的坡角为15°,求树AB的高.(精确到0.1米) (已知sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin15°≈0.26,cos15°≈0.97,tan15°≈0.27.)
|
|
详细信息
|
19. 难度:中等 |
为了测得学校旗杆的高度,小明先站在地面的A点测得旗杆最高点C的仰角为27°(点A距旗杆的距离大于50m),然后他向旗杆的方向向前进了50m,此时测得点C的仰角为40度.又已知小明的眼睛离地面1.6m,请你画出小明测量的示意图,并帮小明计算学校旗杆的高度.(精确到0.1m)
|
|
详细信息
|
20. 难度:中等 |
如图,某中学九年级一班数学课外活动小组利用周末开展课外实践活动,他们要在某公园人工湖旁的小山AB上,测量湖中两个小岛C,D间的距离.从山顶A处测得湖中小岛C的俯角为60°,测得湖中小岛D的俯角为45度.已知小山AB的高为180米,求小岛C,D间的距离.(计算过程和结果均不取近似值)
|
|
详细信息
|
22. 难度:中等 |
又到了一年中的春游季节,某班学生利用周末到白塔山去参观“晏阳初博物馆”.下面是两位同学的一段对话: 甲:我站在此处看塔顶仰角为60°; 乙:我站在此处看塔顶仰角为30°; 甲:我们的身高都是1.5m; 乙:我们相距20m. 请你根据两位同学的对话,计算白塔的高度.(精确到1米)
|
|
详细信息
|
23. 难度:中等 |
如图,小明站在A处放风筝,风筝飞到C处时的线长为20米,这时测得∠CBD=60°,若牵引底端B离地面1.5米,求此时风筝离地面高度.(计算结果精确到0.1米,≈1.732)
|
|
详细信息
|
24. 难度:中等 |
有一座塔,在地面上A点测得其顶点C的仰角为30度.向塔前进50m到B点,又测得C的仰角为60度.求塔的高度.(结果可保留根号)
|
|
详细信息
|
25. 难度:中等 |
如图,为了对我市城区省级文物保护对象--高AC约42米的天然塔(清乾隆五十七年重修)进行保护性维修,工人要在塔顶A和塔底所在地面上的B处之间拉一根铁丝,在BC上的点D处测得塔顶的仰角α为43°(测倾器DE高1.6米,A,E,B三点在同一条直线上).求∠BAC的度数和铁丝AB的长.(接头部分的长度忽略不计,结果精确到0.1米.sin43°≈0.68,tan43°≈0.93)
|
|
详细信息
|
26. 难度:中等 |
如图,AB是一棵古树,某校初四(1)班数学兴趣小组的同学想利用所学知识测出这棵古树的高,过程如下:在古树同侧的水平地面上,分别选取了C、D两点(C、D两点与古树在同一直线上),用测角仪在C处测得古树顶端A的仰角α=60°,在D处测得古树顶端A的仰角β=30°,又测得C、D两点相距14米.已知测角仪高为1.5米,请你根据他们所测得的数据求出古树AB的高.(精确到0.1米,≈1.732)
|
|
详细信息
|
28. 难度:中等 |
如图,在某建筑物AC上,挂着“多彩贵州”的宣传条幅BC,小明站在点F处,看条幅顶端B,测的仰角为30°,再往条幅方向前行20米到达点E处,看到条幅顶端B,测的仰角为60°,求宣传条幅BC的长.(小明的身高不计,结果精确到0.1米)
|
|
详细信息
|
29. 难度:中等 |
某数学兴趣小组在学习了《锐角三角函数》以后,开展测量物体高度的实践活动,他们在河边的一点A测得河对岸小山顶上一座铁塔的塔顶C的仰角为66°、塔底B的仰角为60°,已知铁塔的高度BC为20m(如图),你能根据以上数据求出小山的高BD吗?若不能,请说明理由;若能,请求出小山的高BD.(精确到0.1m)
|
|
详细信息
|
30. 难度:中等 |
已知:如图,有一飞行中的热气球,在A处时的热气球的探测器显示,从热气球看正前方一栋高楼顶部的仰角为45°,看这栋高楼底部的俯角为60°,热气球离地面的高度为150米,为了安全,避免热气球撞上高楼,请问热气球此时至少应再上升多少米? (注:≈1.732,结果精确到1米)
|