1. 难度:中等 | |
已知山坡的坡度i=1:,则坡角为 度. |
2. 难度:中等 | |
九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得如图所放风筝的高度,进行了如下操作: (1)在放风筝的点A处安置测倾器,测得风筝C的仰角∠CBD=60°; (2)根据手中剩余线的长度出风筝线BC的长度为70米; (3)量出测倾器的高度AB=1.5米. 根据测量数据,计算出风筝的高度CE约为 米. (精确到0.1米,≈1.73). |
3. 难度:中等 | |
如图,某同学在学校某建筑物的C点处测得旗杆顶部A点的仰角为30°,旗杆底部B点的俯角为45度.若旗杆底部B点到建筑物的水平距离BE=9米,旗杆台阶高1米,则旗杆顶点A离地面的高度为 米.(结果保留根号) |
4. 难度:中等 | |
如图,小明在楼顶A处测得对面大楼楼顶点C处的仰角为52°,楼底点D处的俯角为13度.若两座楼AB与CD相距60米,则楼CD的高度约为 米.(结果保留三个有效数字)(sin13°≈0.2250,cos13°≈0.9744,tan13°≈0.2309,sin52°≈0.7880,cos52°≈0.6157,tan52°≈1.2799) |
5. 难度:中等 | |
如图,两建筑物AB和CD的水平距离为30米,从A点测得D点的俯角为30°,测得C点的俯角为60°,则建筑物CD的高为 米. |
6. 难度:中等 | |
升国旗时,某同学站在离旗杆底部(DE)24米处行注目礼,当国旗升至旗杆顶端B时,该同学视线的仰角(∠BAC)恰为30°,若双眼离地面(AD)1.5米,则旗杆的高度为 米(结果保留3位小数). |
7. 难度:中等 | |
如图所示,课外活动中,小明在与旗杆AB距离为10米的C处,用测角仪测得旗杆顶部A的仰角为40°,已知测角仪器的高CD=1.5米,则旗杆AB的高是 米.(精确到0.1米) |
8. 难度:中等 | |
某飞机在离地面1200米的上空测得地面控制点的俯角为60°,此时飞机与该地面控制点之间的距离是 米. |
9. 难度:中等 | |
在一艘船上看海岸上高42米的灯塔顶部的仰角为30度,船离海岸线 米. |
10. 难度:中等 | |
如图,小明从A地沿北偏东30°方向走100m到B地,再从B地向正南方向走200m到C地,此时小明离A地 m. |
11. 难度:中等 | |
如图,小明同学在东西方向的环海路A处,测得海中灯塔P在北偏东60°方向上,在A处东500米的B处,测得海中灯塔P在北偏东30°方向上,则灯塔P到环海路的距离PC= 米.(用根号表示) |
12. 难度:中等 | |
王英同学从A地沿北偏西60°方向走100米到B地,再从B地向正南方向走200米到C地,此时王英同学离A地的距离是 米. |
13. 难度:中等 | |
小明骑自行车以15千米/小时的速度在公路上向正北方向匀速行进,如图,出发时,在B点他观察到仓库A在他的北偏东30°处,骑行20分钟后到达C点,发现此时这座仓库正好在他的东南方向,则这座仓库到公路的距离为 千米.(参考数据:≈1.732,结果保留两位有效数字) |
14. 难度:中等 | |
如图,B、C是洲河岸边两点,A是河对岸岸边一点,测得∠ABC=45°,∠ACB=45°,BC=200米,则点A到岸边BC的距离是 米. |
15. 难度:中等 | |
如图,一艘轮船向正东方向航行,上午9时测得它在灯塔P的南偏西30°方向、距离灯塔120海里的M处,上午11时到达这座灯塔的正南方向的N处,则这艘轮船在这段时间内航行的平均速度是 海里/小时. |
16. 难度:中等 | |
一轮船以每小时20海里的速度沿正东方向航行,上午8时,该船在A处测得某灯塔位于它的北偏东30°的B处,如图所示,上午9时行至C处,测得灯塔恰好在它的正北方向,此时它与灯塔的距离是 海里(结果保留根号). |
17. 难度:中等 | |
如图,为了求出湖两岸A、B两点之间的距离,观测者在湖边找到一点C,并分别测∠BAC=90°,∠ABC=30°,又量得BC=160m,则A、B两点之间距离为 m(结果保留根号). |
18. 难度:中等 | |
如图1,一扇窗户打开后用窗钩AB可将其固定. (1)这里所运用的几何原理是( ) (A)三角形的稳定性(B)两点之间线段最短; (C)两点确定一条直线(D)垂线段最短; (2)图2是图1中窗子开到一定位置时的平面图,若∠AOB=45°,∠OAB=30°,OA=60cm,求点B到OA边的距离.(≈1.7,结果精确到整数) |
19. 难度:中等 | |
如图,一盏路灯沿灯罩边缘射出的光线与地面BC交于点B、C,测得∠ABC=45°,∠ACB=30°,且BC=20米. (1)请用圆规和直尺画出路灯A到地面BC的距离AD;(不要求写出画法,但要保留作图痕迹) (2)求出路灯A离地面的高度AD.(精确到0.1米)(参考数据:≈1.414,≈1.732). |
20. 难度:中等 | |
某工厂接受一批支援四川省汶川灾区抗震救灾帐篷的生产任务.根据要求,帐篷的一个横截面框架由等腰三角形和矩形组成(如图所示).已知等腰△ABE的底角∠AEB=θ,且tanθ=,矩形BCDE的边CD=2BC,这个横截面框架(包括BE)所用的钢管总长为15m,求帐篷的篷顶A到底部CD的距离.(结果精确到0.1m) |
21. 难度:中等 | |
如图,教室窗户的高度AF为2.5米,遮阳蓬外端一点D到窗户上椽的距离为AD,某一时刻太阳光从教室窗户射入室内,与地面的夹角∠BPC为30°,PE为窗户的一部分在教室地面所形成的影子且长为米,试求AD的长度.(结果带根号) |
22. 难度:中等 | |
如图1、2,图1是一个小朋友玩“滚铁环”的游戏,铁环是圆形的,铁环向前滚动时,铁环钩保持与铁环相切.将这个游戏抽象为数学问题,如图2.已知铁环的半径为5个单位(每个单位为5cm),设铁环中心为O,铁环钩与铁环相切点为M,铁环与地面接触点为A,∠MOA=α,且sinα=. (1)求点M离地面AC的高度BM(单位:厘米); (2)设人站立点C与点A的水平距离AC等于11个单位,求铁环钩MF的长度(单位:厘 米). |
23. 难度:中等 | |
如图,在离水面高度为5米的岸上有人用绳子拉船靠岸,开始时绳子与水面的夹角为30°,此人以每秒0.5米收绳.问:8秒后船向岸边移动了多少米?(结果精确到0.1米) |
24. 难度:中等 | |
如图所示,A、B为两个村庄,AB、BC、CD为公路,BD为田地,AD为河宽,且CD与AD互相垂直.现在要从E处开始铺设通往村庄A、村庄B的一条电缆,共有如下两种铺设方案: 方案一:E⇒D⇒A⇒B; 方案二:E⇒C⇒B⇒A. 经测量得AB=4千米,BC=10千米,CE=6千米,∠BDC=45°,∠ABD=15度.已知:地下电缆的修建费为2万元/千米,水下电缆的修建费为4万元/千米. (1)求出河宽AD(结果保留根号); (2)求出公路CD的长; (3)哪种方案铺设电缆的费用低?请说明你的理由. |
25. 难度:中等 | |
如图1所示的是某立式家具(角书橱)的横断面,请你设计一个方案(角书橱高2m,房间高2.6m,所以不必从高度方面考虑方案的设计),按此方案,可使该家具能通过如图2中的长廊搬入房间.把你设计的方案画成草图,并说明按此方案可把家具搬入房间的理由.(注:搬运过程中不准拆家具,不准损坏墙壁) |
26. 难度:中等 | |
如图,点A、B为地球仪的南、北极点,直线AB与放置地球仪的平面交于点D,所成的角度约为67°,半径OC所在的直线与放置平面垂直,垂足为点E.DE=15cm,AD=14cm.求半径OA的长.(精确到0.1cm) 参考数据:sin67°≈0.92,cos67°≈0.39,tan67°≈2.36. |
27. 难度:中等 | |
某校把一块沿河的三角形废地(如图)开辟为生物园,已知∠ACB=90°,∠CAB=54°,BC=60米. (1)现学校准备从点C处向河岸AB修一条小路CD,使得CD将生物园分割成面积相等的两部分,请你用直尺和圆规在图中作出小路CD(保留作图痕迹); (2)为便于浇灌,学校在点C处建了一个蓄水池,利用管道从河中取水,已知每铺设1米管道费用为50元,求铺设管道的最低费用(精确到1元). 参考数据:tan36°=0.73,sin36°=0.59,cos36°=0.81. |
28. 难度:中等 | |
如图,有一段斜坡BC长为10米,坡角∠CBD=12°,为方便残疾人的轮椅车通行,现准备把坡角降为5度. (1)求坡高CD; (2)求斜坡新起点A与原起点B的距离(精确到0.1米). |
29. 难度:中等 | |
小鹏学完解直角三角形知识后,给同桌小艳出了一道题:“如图所示,把一张长方形卡片ABCD放在每格宽度为12mm的横格纸中,恰好四个顶点都在横格线上,已知α=36°,求长方形卡片的周长.”请你帮小艳解答这道题.(精确到1mm)(参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75) |
30. 难度:中等 | |
花园小区有一朝向为正南方向的居民楼(如图),该居民楼的一楼是高4米的小区商场,商场以上是居民住房.在该楼的前面16米处要盖一栋高18米的办公楼.当冬季正午的阳光与水平线的夹角为35°时,问: (1)商场以上的居民住房采光是否有影响,为什么? (2)若要使商场采光不受影响,两楼应相距多少米?(结果保留一位小数) (参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70) |