1. 难度:中等 | |
如图,在⊙O中,D、E分别为半径OA、OB上的点,且AD=BE.点C为弧AB上一点,连接CD、CE、CO,∠AOC=∠BOC. 求证:CD=CE. |
2. 难度:中等 | |
如图,AB为⊙O直径,CD为弦,且CD⊥AB,垂足为H. (1)∠OCD的平分线CE交⊙O于E,连接OE.求证:E为的中点; (2)如果⊙O的半径为1,CD=. ①求O到弦AC的距离; ②填空:此时圆周上存在______个点到直线AC的距离为. |
3. 难度:中等 | |
如图,,D、E分别是半径OA和OB的中点,CD与CE的大小有什么关系?为什么? |
4. 难度:中等 | |
已知Rt△ABC中,∠ACB=90°,CA=CB,有一个圆心角为45°,半径的长等于CA的扇形CEF绕点C旋转,且直线CE,CF分别与直线AB交于点M,N. (Ⅰ)当扇形CEF绕点C在∠ACB的内部旋转时,如图1,求证:MN2=AM2+BN2; (思路点拨:考虑MN2=AM2+BN2符合勾股定理的形式,需转化为在直角三角形中解决.可将△ACM沿直线CE对折,得△DCM,连DN,只需证DN=BN,∠MDN=90°就可以了.请你完成证明过程.) (Ⅱ)当扇形CEF绕点C旋转至图2的位置时,关系式MN2=AM2+BN2是否仍然成立?若成立,请证明;若不成立,请说明理由. |
5. 难度:中等 | |
如图,射线AM交一圆于点B、C,射线AN交该圆于点D、E,且. (1)求证:AC=AE; (2)利用尺规作图,分别作线段CE的垂直平分线与∠MCE的平分线,两线交于点F(保留作图痕迹,不写作法),求证:EF平分∠CEN. |
6. 难度:中等 | |
如图,已知⊙O的半径为2,以⊙O的弦AB为直径作⊙M,点C是⊙O优弧上的一个动点(不与点A、点B重合).连接AC、BC,分别与⊙M相交于点D、点E,连接DE.若AB=2. (1)求∠C的度数; (2)求DE的长; (3)如果记tan∠ABC=y,=x(0<x<3),那么在点C的运动过程中,试用含x的代数式表示y. |
7. 难度:中等 | |
如图,已知A、B、C、D是⊙O上的四个点,AB=BC,BD交AC于点E,连接CD、AD. (1)求证:DB平分∠ADC; (2)若BE=3,ED=6,求AB的长. |
8. 难度:中等 | |
如图,AB是⊙O的弦,矩形ABCD的边CD与⊙O交于点E,F,AF和BE相交于点G,连接AE,BF. (1)写出图中每一对全等的三角形(不再添加辅助线); (2)选择你在(1)中写出的全等三角形中的任意一对进行证明. |
9. 难度:中等 | |
如图,在⊙O中,弦AB与CD相交于点M,AD=BC,连接AC. (1)求证:△MAC是等腰三角形; (2)若AC为⊙O直径,求证:AC2=2AM•AB. |
10. 难度:中等 | |
如图所示,⊙O半径为2,弦BD=2,A为弧BD的中点,E为弦AC的中点,且在BD上,求四边形ABCD的面积. |
11. 难度:中等 | |
如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD. (1)求证:BD=CD; (2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由. |
12. 难度:中等 | |
如图,某种雨伞的伞面可以看成由12块完全相同的等腰三角形布料缝合而成,量得其中一个三角形OAB的边OA=OB=56cm. (1)求∠AOB的度数; (2)求△OAB的面积.(不计缝合时重叠部分的面积) |
13. 难度:中等 | |
如图,是一个匀速旋转(指每分钟旋转的弧长或圆心角相同)的摩天轮的示意图,O为圆心,AB为水平地面,假设摩天轮的直径为80米,最低点C离地面为6米,旋转一周所用的时间为6分钟,小明从点C乘坐摩天轮(身高忽略不计),请问: (1)经过2分钟后,小明离开地面的高度大约是多少米? (2)若小明到了最高点,在视线没有阻挡的情况下能看到周围3公里远的地面景物,则他看到的地面景物有多大面积?(精确到1平方公里) |
14. 难度:中等 | |
机器人“海宝”在某圆形区域表演“按指令行走”,如图所示,“海宝”从圆心O出发,先沿北偏西67.4°方向行走13米至点A处,再沿正南方向行走14米至点B处,最后沿正东方向行走至点C处,点B、C都在圆O上. (1)求弦BC的长;(2)求圆O的半径长. (本题参考数据:sin67.4°=,cos67.4°=,tan67.4°=) |