1. 难度:中等 | |
如图,P(x,y)是以坐标原点为圆心,5为半径的圆周上的点,若P都是整数点,则这样的点共有( ) A.4个 B.8个 C.12个 D.16个 |
2. 难度:中等 | |
以直角坐标系的原点O为圆心,以1为半径作圆.若点P是该圆上第一象限内的一点,且OP与x轴正方向组成的角为α,则点P的坐标为( ) A.(cosα,1) B.(1,sinα) C.(sinα,cosα) D.(cosα,sinα) |
3. 难度:中等 | |
在直角坐标系中,⊙P、⊙Q的位置如图所示.下列四个点中,在⊙P外部且在⊙Q内部的是( ) A.(1,2) B.(2,1) C.(2,-1) D.(3,1) |
4. 难度:中等 | |
若⊙A的半径为5,圆心A的坐标是(3,4),点P的坐标是(5,8),你认为点P的位置为( ) A.在⊙A内 B.在⊙A上 C.在⊙A外 D.不能确定 |
5. 难度:中等 | |
如图,正方形ABCD的边长为2,将长为2的线段QR的两端放在正方形的相邻的两边上同时滑动.如果点Q从点A出发,沿图中所示方向按A⇒B⇒C⇒D⇒A滑动到A止,同时点R从点B出发,沿图中所示方向按B⇒C⇒D⇒A⇒B滑动到B止,在这个过程中,线段QR的中点M所经过的路线围成的图形的面积为( ) A.2 B.4-π C.π D.π-1 |
6. 难度:中等 | |
如图是公园的路线图,⊙O1,⊙O2,⊙O两两相切,点A,B,O分别是切点,甲乙二人骑自行车,同时从点A出发,以相同的速度,甲按照“圆”形线行驶,乙行驶“8字型”线路行驶.若不考虑其他因素,结果先回到出发点的人是( ) A.甲 B.乙 C.甲乙同时 D.无法判定 |
7. 难度:中等 | |
下列图形中面积最大的是( ) A.边长为5的正方形 B.半径为的圆 C.边长分别为6,8,10的直角三角形 D.边长为7的正三角形 |
8. 难度:中等 | |
中央电视台“开心辞典”栏目曾有这么一道题:圆的半径增加了一倍,那么圆的面积增加了( ) A.一倍 B.二倍 C.三倍 D.四倍 |
9. 难度:中等 | |
在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2.下列说法中不正确的是( ) A.当a<5时,点B在⊙A内 B.当1<a<5时,点B在⊙A内 C.当a<1时,点B在⊙A外 D.当a>5时,点B在⊙A外 |
10. 难度:中等 | |
我们知道,“两点之间线段最短”,“直线外一点与直线上各点连接的所有线段中,垂线段最短”.在此基础上,人们定义了点与点的距离,点到直线的距离.类似地,如图,若P是⊙O外一点,直线PO交⊙O于A,B两点,PC切⊙O于点C,则点P到⊙O的距离应定义为( ) A.线段PO的长度 B.线段PA的长度 C.线段PB的长度 D.线段PC的长度 |
11. 难度:中等 | |
若⊙O所在平面内一点P到⊙O上的点的最大距离为a,最小距离为b(a>b),则此圆的半径为( ) A. B. C.或 D.a+b或a-b |
12. 难度:中等 | |
已知⊙O和三点P、Q、R,⊙O的半径为3,OP=2,OQ=3,OR=4,经过这三点中的一点任意作直线总是与⊙O相交,这个点是( ) A.P B.Q C.R D.P或Q |
13. 难度:中等 | |
已知⊙O的半径为5厘米,A为线段OP的中点,当OP=6厘米时,点A与⊙O的位置关系是( ) A.点A在⊙O内 B.点A在⊙O上 C.点A在⊙O外 D.不能确定 |
14. 难度:中等 | |
⊙O的半径为5,圆心O的坐标为(0,0),点P的坐标为(4,2),则点P与⊙O的位置关系是( ) A.点P在⊙O内 B.点P的⊙O上 C.点P在⊙O外 D.点P在⊙O上或⊙O外 |
15. 难度:中等 | |
已知圆心在原点O,半径为5的⊙O,则点P(-3,4)与⊙O的位置关系是( ) A.在⊙O内 B.在⊙O上 C.在⊙O外 D.不能确定 |
16. 难度:中等 | |
如图,直线l经过⊙O的圆心O,且与⊙O交于A、B两点,点C在⊙O上,且∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于另一点Q,如果QP=QO,则∠OCP= . |
17. 难度:中等 | |
如图,A是硬币圆周上一点,硬币与数轴相切于原点O(A与O点重合).假设硬币的直径为1个单位长度,若将硬币沿数轴正方向滚动一周,点A恰好与数轴上点A′重合,则点A′对应的实数是 . |
18. 难度:中等 | |
如图,两个半径都是4cm的圆外切于点C,一只蚂蚁由点A开始依ABCDEFCGA的顺序沿着圆周上的8段长度相等的路径绕行,蚂蚁在这8段路径上不断地爬行,直到行走2006πcm后才停下来,请问这只蚂蚁停在哪一个点?答:停在 点. |
19. 难度:中等 | |
在同一平面内,1个圆把平面分成0×1+2=2个部分,2个圆把平面最多分成1×2+2=4个部分,3个圆把平面最多分成2×3+2=8个部分,4个圆把平面最多分成3×4+2=14个部分,那么10个圆把平面最多分成 个部分. |
20. 难度:中等 | |
如图所示,AB是⊙O的弦,半径OC、OD分别交AB于点E、F,且AE=BF,请你找出线段OE与OF的数量关系,并给予证明. |
21. 难度:中等 | |
已知:如图,在△ABC中,∠ACB=90°,∠B=25°,以C为圆心,CA长为半径的圆交AB于D,求的度数. |
22. 难度:中等 | |
如图,等边△ABC的边长为2,E是边BC上的动点,EF∥AC交边AB于点F,在边AC上取一点P,使PE=EB,连接FP. (1)请直接写出图中与线段EF相等的两条线段;(不再另外添加辅助线) (2)探究:当点E在什么位置时,四边形EFPC是平行四边形?并判断四边形EFPC是什么特殊的平行四边形,请说明理由; (3)在(2)的条件下,以点E为圆心,r为半径作圆,根据⊙E与平行四边形EFPC四条边交点的总个数,求相应的r的取值范围. |