相关试卷
当前位置:首页 > 初中数学试卷 > 试卷信息
第22章《圆(上)》常考题集(07):22.3 圆的对称性(解析版)
一、解答题
详细信息
1. 难度:中等
如图,有一个拱桥是圆弧形,它的跨度为60m,拱高为18m,当洪水泛滥跨度小于30m时,要采取紧急措施.若拱顶离水面只有4m时,问是否要采取紧急措施?

manfen5.com 满分网
详细信息
2. 难度:中等
如图,圆柱形水管内原有积水的水平面宽CD=20cm,水深GF=2cm.若水面上升2cm(EG=2cm),则此时水面宽AB为多少?

manfen5.com 满分网
详细信息
3. 难度:中等
以下左图形为杭州国际会议中心,是全国最大的球形建筑,如图1是球体的轴截面,已知这个球体的高度为86米,球的半径为50米,则这个国际会议中心建筑的占地面积为多少?(结果保留π)
manfen5.com 满分网
详细信息
4. 难度:中等
如图,在⊙O中,D、E分别为半径OA、OB上的点,且AD=BE.点C为弧AB上一点,连接CD、CE、CO,∠AOC=∠BOC.
求证:CD=CE.

manfen5.com 满分网
详细信息
5. 难度:中等
已知Rt△ABC中,∠ACB=90°,CA=CB,有一个圆心角为45°,半径的长等于CA的扇形CEF绕点C旋转,且直线CE,CF分别与直线AB交于点M,N.
(Ⅰ)当扇形CEF绕点C在∠ACB的内部旋转时,如图1,求证:MN2=AM2+BN2
(思路点拨:考虑MN2=AM2+BN2符合勾股定理的形式,需转化为在直角三角形中解决.可将△ACM沿直线CE对折,得△DCM,连DN,只需证DN=BN,∠MDN=90°就可以了.请你完成证明过程.)
(Ⅱ)当扇形CEF绕点C旋转至图2的位置时,关系式MN2=AM2+BN2是否仍然成立?若成立,请证明;若不成立,请说明理由.
manfen5.com 满分网
详细信息
6. 难度:中等
如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.
(1)P是manfen5.com 满分网上一点(不与C、D重合),求证:∠CPD=∠COB;
(2)点P′在劣弧CD上(不与C、D重合)时,∠CP′D与∠COB有什么数量关系?请证明你的结论.

manfen5.com 满分网
详细信息
7. 难度:中等
已知:如图,在⊙O中,弦AD=BC.求证:AB=CD.

manfen5.com 满分网
详细信息
8. 难度:中等
如图:⊙O上有A、B、C、D、E五点,且已知AB=BC=CD=DE,AB∥ED.
(1)求∠A、∠E的度数;
(2)连CO交AE于G,交manfen5.com 满分网于H,写出四条与直径CH有关的正确结论.(不必证明)

manfen5.com 满分网
Copyright @ 2008-2013 满分5 学习网 ManFen5.COM. All Rights Reserved.