1. 难度:中等 | |
如图,有一个拱桥是圆弧形,它的跨度为60m,拱高为18m,当洪水泛滥跨度小于30m时,要采取紧急措施.若拱顶离水面只有4m时,问是否要采取紧急措施? |
2. 难度:中等 | |
如图,圆柱形水管内原有积水的水平面宽CD=20cm,水深GF=2cm.若水面上升2cm(EG=2cm),则此时水面宽AB为多少? |
3. 难度:中等 | |
以下左图形为杭州国际会议中心,是全国最大的球形建筑,如图1是球体的轴截面,已知这个球体的高度为86米,球的半径为50米,则这个国际会议中心建筑的占地面积为多少?(结果保留π) |
4. 难度:中等 | |
如图,在⊙O中,D、E分别为半径OA、OB上的点,且AD=BE.点C为弧AB上一点,连接CD、CE、CO,∠AOC=∠BOC. 求证:CD=CE. |
5. 难度:中等 | |
已知Rt△ABC中,∠ACB=90°,CA=CB,有一个圆心角为45°,半径的长等于CA的扇形CEF绕点C旋转,且直线CE,CF分别与直线AB交于点M,N. (Ⅰ)当扇形CEF绕点C在∠ACB的内部旋转时,如图1,求证:MN2=AM2+BN2; (思路点拨:考虑MN2=AM2+BN2符合勾股定理的形式,需转化为在直角三角形中解决.可将△ACM沿直线CE对折,得△DCM,连DN,只需证DN=BN,∠MDN=90°就可以了.请你完成证明过程.) (Ⅱ)当扇形CEF绕点C旋转至图2的位置时,关系式MN2=AM2+BN2是否仍然成立?若成立,请证明;若不成立,请说明理由. |
6. 难度:中等 | |
如图,在⊙O中,AB是直径,CD是弦,AB⊥CD. (1)P是上一点(不与C、D重合),求证:∠CPD=∠COB; (2)点P′在劣弧CD上(不与C、D重合)时,∠CP′D与∠COB有什么数量关系?请证明你的结论. |
7. 难度:中等 | |
已知:如图,在⊙O中,弦AD=BC.求证:AB=CD. |
8. 难度:中等 | |
如图:⊙O上有A、B、C、D、E五点,且已知AB=BC=CD=DE,AB∥ED. (1)求∠A、∠E的度数; (2)连CO交AE于G,交于H,写出四条与直径CH有关的正确结论.(不必证明) |