1. 难度:中等 | |
半径为2.5的⊙O中,直径AB的不同侧有定点C和动点P.已知BC:CA=4:3,点P在上运动,过点C作CP的垂线,与PB的延长线交于点Q. (1)当点P与点C关于AB对称时,求CQ的长; (2)当点P运动到的中点时,求CQ的长; (3)当点P运动到什么位置时,CQ取到最大值?求此时CQ的长. |
2. 难度:中等 | |
如图,已知在半圆AOB中,AD=DC,∠CAB=30°,AC=2,求AD的长度. |
3. 难度:中等 | |
如图,在⊙O中,弦AB与CD相交于点P,连接AC、DB. (1)求证:△PAC与△PDB是否相似______(填“是”或“否”); (2)当=______时,=4. |
4. 难度:中等 | |
如图,AB、CD是⊙O的直径,DF、BE是弦,且DF=BE,求证:∠D=∠B. |
5. 难度:中等 | |
如图所示,在△ABC中,以AB为直径的⊙O交BC于D,连接AD,请添加一个条件使△ABD≌△ACD,并加以证明. 你添加的条件是______. 证明: |
6. 难度:中等 | |
已知:如图,⊙O1和⊙O2相交于A、B两点,动点P在⊙O2上,且在⊙1外,直线PA、PB分别交⊙O1于C、D,问:⊙O1的弦CD的长是否随点P的运动而发生变化?如果发生变化,请你确定CD最长和最短时P的位置,如果不发生变化,请你给出证明. |
7. 难度:中等 | |
如图所示,⊙O的直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于D,求BC,AD,BD的长. |
8. 难度:中等 | |
如图,在△ABC的外接圆O中,D是弧BC的中点,AD交BC于点E,连接BD.连接DC,DC2=DE•DA是否成立?若成立,给出证明;若不成立,举例说明. |
9. 难度:中等 | |
如图所示,OA、OB、OC都是圆O的半径,∠AOB=2∠BOC. 求证:∠ACB=2∠BAC. |
10. 难度:中等 | |
已知,如图,AB是⊙O的直径,C是⊙O上一点,连接AC,过点C作直线CD⊥AB于D(AD<DB),点E是DB上任意一点(点D、B除外),直线CE交⊙O于点F,连接AF与直线CD交于点G. (1)求证:AC2=AG•AF; (2)若点E是AD(点A除外)上任意一点,上述结论是否仍然成立?若成立,请画出图形并给予证明;若不成立,请说明理由. |
11. 难度:中等 | |
如图,AB、CD是⊙O的两条弦,延长AB、CD交于点P,连接AD、BC交于点E.∠P=30°,∠ABC=50°,求∠A的度数. |
12. 难度:中等 | |
如图,⊙O是等腰三角形ABC的外接圆,AB=AC,延长BC到点D,使CD=AC,连接AD交⊙O于点E,连接BE与AC交于点F. (1)判断BE是否平分∠ABC,并说明理由; (2)若AE=6,BE=8,求EF的长. |
13. 难度:中等 | |
如图所示,圆O是△ABC的外接圆,∠BAC与∠ABC的平分线相交于点I,延长AI交圆O于点D,连接BD、DC. (1)求证:BD=DC=DI; (2)若圆O的半径为10cm,∠BAC=120°,求△BDC的面积. |
14. 难度:中等 | |
如图,AB是⊙O的直径,BC是弦,OD⊥BC于E,交于D. (1)请写出四个不同类型的正确结论; (2)连接CD,设∠CDB=α,∠ABC=β,试找出α与β之间的一种关系式,并予以证明. |
15. 难度:中等 | |
如图,△ABC是⊙O的内接三角形,AC=BC,D为⊙O中上一点,延长DA至点E,使CE=CD. (1)求证:AE=BD; (2)若AC⊥BC,求证:AD+BD=CD. |
16. 难度:中等 | |
如图,已知:在⊙O中,直径AB=4,点E是OA上任意一点,过E作弦CD⊥AB,点F是上一点,连接AF交CE于H,连接AC、CF、BD、OD. (1)求证:△ACH∽△AFC; (2)猜想:AH•AF与AE•AB的数量关系,并说明你的猜想; (3)探究:当点E位于何处时,S△AEC:S△BOD=1:4,并加以说明. |
17. 难度:中等 | |
如图,在边长为2的圆内接正方形ABCD中,AC是对角线,P为边CD的中点,延长AP交圆于点E. (1)∠E=______度; (2)写出图中现有的一对不全等的相似三角形,并说明理由; (3)求弦DE的长. |
18. 难度:中等 | |
如图,已知⊙O的弦CD垂直于直径AB,点E在CD上,且EC=EB. (1)求证:△CEB∽△CBD; (2)若CE=3,CB=5,求DE的长. |