1. 难度:中等 | |
一袋子中有4颗球,分别标记号码1、2、3、4.已知每颗球被取出的机会相同,若第一次从袋中取出一球后放回,第二次从袋中再取出一球,则第二次取出球的号码比第一次大的机率为( ) A. B. C. D. |
2. 难度:中等 | |
甲、乙两袋均有红、黄色球各一个,分别从两袋中任意取出一球,那么所取出的两球是同色球的概率为( ) A. B. C. D. |
3. 难度:中等 | |
在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率等于( ) A. B. C. D. |
4. 难度:中等 | |
在一个不透明的袋子中装有2个红球,3个白球,它们除颜色外其余均相同,随机从中摸出一球,记录下颜色后将它放回袋子中,充分摇匀后,再随机摸出一球,则两次都摸到红球的概率是( ) A. B. C. D. |
5. 难度:中等 | |
如图,一个小球从A点沿制定的轨道下落,在每个交叉口都有向左或向右两种机会均相等的结果,那么,小球最终到达H点的概率是( ) A. B. C. D. |
6. 难度:中等 | |
一个袋中有2个红球,2个黄球,每个球除颜色外都相同,从中摸出2个球,2个球都是红球的可能性是( ) A. B. C. D. |
7. 难度:中等 | |
一个袋中有除颜色外其余特征均相同的4个珠子,其中2个白色,2个黑色.若从这个袋中任意取2个珠子,则其颜色不同的概率是( ) A. B. C. D. |
8. 难度:中等 | |
如图,甲为四等分数字转盘,乙为三等分数字转盘.同时自由转动两个转盘,当转盘停止转动后(若指针指在边界处则重转),两个转盘指针指向数字之和不超过4的概率是( ) A. B. C. D. |
9. 难度:中等 | |
均匀的正四面体的各面上依次标有1,2,3,4四个数字,同时抛掷两个这样的正四面体,着地的一面数字之和为5的概率是( ) A. B. C. D. |
10. 难度:中等 | |
小兰和小潭分别用掷A、B两枚骰子的方法来确定P(x,y)的位置,她们规定:小兰掷得的点数为x,小谭掷得的点数为y,那么,她们各掷一次所确定的点落在已知直线y=-2x+6上的概率为( ) A. B. C. D. |
11. 难度:中等 | |
两道单选题都含有A、B、C、D四个选项,瞎猜这两道题恰好全部猜对的概率为( ) A. B. C. D. |
12. 难度:中等 | |
一布袋中放有红、黄球各一个,它们除颜色外其它都一样.小明从布袋中摸出一个球后放回去摇匀,再摸出一个球.小明两次都摸出红球的概率为( ) A.0.5 B.0.25 C.0.125 D.0.75 |
13. 难度:中等 | |
做重复实验:抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的频率约为0.44,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为( ) A.0.22 B.0.44 C.0.50 D.0.56 |
14. 难度:中等 | |
在一个不透明的布袋中装有红色,白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有( ) A.4个 B.6个 C.34个 D.36个 |
15. 难度:中等 | ||||||||||||||||||||||
“六•一”儿童节,某玩具超市设立了一个如图所示的可以自由转动的转盘,开展有奖购买活动.顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该活动的一组统计数据.下列说法不正确的是( )
A.当n很大时,估计指针落在“铅笔”区域的频率大约是0.70 B.假如你去转动转盘一次,获得铅笔的概率大约是0.70 C.如果转动转盘2000次,指针落在“文具盒”区域的次数大约有600次 D.转动转盘10次,一定有3次获得文具盒 |
16. 难度:中等 | |
在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能是( ) A.24 B.18 C.16 D.6 |
17. 难度:中等 | |
在一次质检抽测中,随机抽取某摊位20袋食盐,测得各袋的质量分别为(单位:G): 492,496,494,495,498,497,501,502,504,496 497,503,506,508,507,492,496,500,501,499 根据以上抽测结果,任买一袋该摊位的食盐,质量在497.5g~501.5g之间的概率为( ) A. B. C. D. |
18. 难度:中等 | |
在一个暗箱里放有a个除颜色外其它完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a大约是( ) A.12 B.9 C.4 D.3 |
19. 难度:中等 | |
某人在做掷硬币实验时,投掷m次,正面朝上有n次(即正面朝上的频率是p=).则下列说法中正确的是( ) A.P一定等于 B.P一定不等于 C.多投一次,P更接近 D.投掷次数逐渐增加,P稳定在附近 |
20. 难度:中等 | |
一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球( ) A.28个 B.30个 C.36个 D.42个 |
21. 难度:中等 | |
如果鸟卵孵化后,雏鸟为雌为雄的概率相同.如果2枚卵全部成功孵化,则2只雏鸟都为雄鸟的概率是 . |
22. 难度:中等 | |
暑假期间,瑞瑞打算参观上海世博会.她要从中国馆、澳大利亚馆、德国馆、英国馆、日本馆和瑞士馆中预约两个馆重点参观.想用抽签的方式决定.于是她做了分别写有以上馆名的六张卡片,从中任意抽取两张来确定预约的场馆,则她恰好抽中中国馆、澳大利亚馆的概率是 . |
23. 难度:中等 | |
有4张背面相同的扑克牌,正面数字分别为2,3,4,5.若将这4张扑克牌背面向上洗匀后,从中任意抽取一张,放回后洗匀,再从中任意抽取一张.这两张扑克牌正面数字之和是3的倍数的概率为 . |
24. 难度:中等 | |
甲盒装有3个乒乓球,分别标号为:1,2,3;乙盒装有2个乒乓球,分别标号为1,2现分别从每个盒中随机地取出1个球,则取出的两球标号之和为4的概率是 . |
25. 难度:中等 | |
在分别写有数字-1,0,1,2的四张卡片中,随即抽取一张后放回,再随即抽取一张.以第一次抽取的数字作为横坐标,第二次抽取的数字作为纵坐标的点落在第一象限的概率是 . |
26. 难度:中等 | |
上海世博会与2010年5月1日正式开幕,都匀市为了加大对“都匀毛尖茶”的宣传力度,特向全市公开选拔2名“茶仙子”参与世博会贵州馆的宣传、服务工作,经过层层选拔,甲、乙、丙、丁四名选手进入决赛,则甲、乙同时获得“茶仙子”称号的概率是 . |
27. 难度:中等 | |
屏幕上有四张卡片,卡片上分别有大写的英文字母“A,Z,E,X”,现已将字母隐藏.只要用手指触摸其中一张,上面的字母就会显现出来.某同学任意触摸其中2张,上面显现的英文字母都是中心对称图形的概率是 . |
28. 难度:中等 | |
现有点数为:2,3,4,5的四张扑克牌,背面朝上洗匀,然后从中任意抽取两张,这两张牌上的数字之和为偶数的概率为 . |
29. 难度:中等 | |
有背面完全相同,正面上分别标有两个连续自然数k,k+1(其中k=0,1,2,…,19)的卡片20张.小李将其混合后,正面朝下放置在桌面上,并从中随机地抽取一张,则该卡片上两个数的各位数字之和(例如:若取到标有9,10的卡片,则卡片上两个数的各位数字之和为9+1+0=10)不小于14的概率为 . |
30. 难度:中等 | |
甲、乙两人玩猜数字游戏,先由甲心中任想一个数字,记为a,再由乙猜甲刚才所想数字,把乙所猜数字记为b,且a,b分别取0,1,2,3,若a,b满足|a-b|≤1,则称甲、乙两人“心有灵犀”,现任意找两个玩这个游戏,得出“心有灵犀”的概率为 . |