1. 难度:中等 | |
如图,有6张纸牌,从中任意抽取两张,点数和为奇数的概率是 . |
2. 难度:中等 | |
同时抛掷两枚均匀的硬币,则两枚硬币正面都向上的概率是 . |
3. 难度:中等 | |
一个盒子里有4个除颜色外其余都相同的玻璃球,一个红色,一个绿色,2个白色,现随机从盒子里一次取出两个球,则这两个球都是白球的概率是 . |
4. 难度:中等 | |
附加题:盒中有6个均匀的球,其中红、黑、黄三种颜色的球各2个,第一次摸出一球后,不放回盒中,再从剩余的球里摸出一球,则两次摸到同色球的概率是 . |
5. 难度:中等 | |
一个口袋中装有10个红球和若干个黄球.在不允许将球倒出来数的前提下,为估计口袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程20次,得到红球数与10的比值的平均数为0.4.根据上述数据,估计口袋中大约有 个黄球. |
6. 难度:中等 | |
为了估计不透明的袋子里装有多少白球,先从袋中摸出10个球都做上标记,然后放回袋中去,充分摇匀后再摸出10个球,发现其中有一个球有标记,那么你估计袋中大约有 个白球. |
7. 难度:中等 | |
在一个不透明的布袋中,有黄色、白色的乒乓球共10个,这些球除颜色外都相同.小刚通过多次摸球实验后发现其中摸到黄球的频率稳定在60%,则布袋中白色球的个数很可能是 个. |
8. 难度:中等 | |
小颖妈妈经营的玩具店某次进了一箱黑白两种颜色的塑料球3000个,为了估计两种颜色的球各有多少个,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到黑球的频率在0.7附近波动,据此可以估计黑球的个数约是 个. |
9. 难度:中等 | |
在一个不透明的布袋中,红色、黑色、白色的玻璃球共有60个,除颜色外,形状、大小、质地等完全相同.小刚通过多次摸球实验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是 个. |
10. 难度:中等 | ||||||||||||||||||||||
从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:
|
11. 难度:中等 | |||||||||
在创建国家生态园林城市活动中,某市园林部门为了扩大城市的绿化面积.进行了大量的树木移栽.下表记录的是在相同的条件下移栽某种幼树的棵数与成活棵树:依此估计这种幼树成活的概率是 .(结果用小数表示,精确到0.1)
|
12. 难度:中等 | |
一个口袋中有12个白球和若干个黑球,在不允许将球倒出来数的前提下,小亮为估计口袋中黑球的个数,采用了如下的方法:每次先从口袋中摸出10个球,求出其中白球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程5次,得到的白球数与10的比值分别为:0.4,0.1,0.2,0.1,0.2.根据上述数据,小亮可估计口袋中大约有 个黑球. |
13. 难度:中等 | |
袋中装有除颜色外其余都相同的红球和黄球共25个,小明通过多次模拟实验后,发现摸到的红球、黄球的概率分别是和,则袋中黄球有 个. |
14. 难度:中等 | |
口袋中有红色、黄色、蓝色的玻璃球共80个,小华通过多次试验后,发现摸到红球、黄球的频率依次是45%、25%,则估计口袋中篮球的个数约为 个. |
15. 难度:中等 | |
“端午”节前,第一次爸爸去超市购买了大小、质量都相同的火腿粽子和豆沙粽子若干,放入不透明的盒中,此时随机取出火腿粽子的概率为;妈妈发现小亮喜欢吃的火腿粽子偏少,第二次妈妈又去买了同样的5只火腿粽子和1只豆沙粽子放入同一盒中,这时随机取出火腿粽子的概率为. (1)请计算出第一次爸爸买的火腿粽子和豆沙粽子各有多少只? (2)若妈妈从盒中取出火腿粽子4只、豆沙粽子6只送爷爷和奶奶后,再让小亮从盒中不放回地任取2只,问恰有火腿粽子、豆沙粽子各1只的概率是多少?(用字母和数字表示豆沙粽子和火腿粽子,用列清法计算) |
16. 难度:中等 | |
在一次数学活动中,黑板上画着如图所示的图形,活动前老师在准备的四张纸片上分别写有如下四个等式中的一个等式: ①AB=DC;②∠ABE=∠DCE;③AE=DE;④∠A=∠D 小明同学闭上眼睛从四张纸片中随机抽取一张,再从剩下的纸片中随机抽取另一张.请结合图形解答下列两个问题: (1)当抽得①和②时,用①,②作为条件能判定△BEC是等腰三角形吗?说说你的理由; (2)请你用树状图或表格表示抽取两张纸片上的等式所有可能出现的结果(用序号表示),并求以已经抽取的两张纸片上的等式为条件,使△BEC不能构成等腰三角形的概率. |
17. 难度:中等 | |
在学习“轴对称现象”内容时,王老师让同学们寻找身边的轴对称图形,小明有一副三角尺和一个量角器 (如图所示). (1)小明的这三件文具中,可以看做是轴对称图形的是______(填字母代号); (2)请用这三个图形中的两个拼成一个轴对称图案,在答题卡的指定位置画出草图(只须画出一种); (3)小红也有同样的一副三角尺和一个量角器.若他们分别从自己这三件文具中随机取出一件,则可以拼成一个轴对称图案的概率是多少(请画树状图或列表计算). |
18. 难度:中等 | |
如图,放在平面直角坐标系中的正方形ABCD的边长为4,现做如下实验:抛掷一枚均匀的正四面体骰子(如图,它有四个顶点,各顶点数分别是1、2、3、4),每个顶点朝上的机会是相同的,连续抛掷两次,将骰子朝上的点数作为直角坐标系中点P的坐标(第一次的点数为横坐标,第二次的点数为纵坐标). (1)求点P落在正方形面上(含边界,下同)的概率; (2)将正方形ABCD平移数个单位,是否存在一种平移,使点P落在正方形面上的概率为?若存在,指出其中的一种平移方式;若不存在,说明理由. |
19. 难度:中等 | |
某校九年级有200名学生参加了全国初中数学联合竞赛的初赛,为了了解本次初赛的成绩情况,从中抽取了50名学生,将他们的初赛成绩(得分为整数,满分为100分)分成五组:第一组49.5~59.5;第二组59.5~69.5;第三组69.5~79.5;第四组79.5~89.5;第五组89.5~100.5.统计后得到图所示的频数分布直方图(部分). 观察图形的信息,回答下列问题: (1)第四组的频数为______;(直接填写答案) (2)若将得分转化为等级,规定:得分低于59.5分评为“D”,59.5~69.5分评为“C”,69.5~89.5分评为“B”,89.5~100.5分评为“A”.那么这200名参加初赛的学生中,参赛成绩评为“D”的学生约有______个.(直接填写答案) (3)若将抽取出来的50名学生中成绩落在第四、第五组的学生组成一个培训小组,再从这个培训小组中随机挑选2名学生参加决赛.用列表法或画树状图法求:挑选的2名学生的初赛成绩恰好都在90分以上的概率. |
20. 难度:中等 | |||||||||||||||||||||||||||||
赏郎中学初三某班的同学积极参加体育锻炼,该班班长在篮球场对自己进行篮球定点投球测试,下表是他的测试成绩及相关数据:
(2)画出班长进球次数的频率分布折线图; (3)就数据5,10,15,20,25,30而言,这组数据的中位数是多少? (4)如果这个测试继续进行下去,每回的投球次数不断增加,根据上表数据,测试的频率将稳定在他投球每1回时进球的概率附近,请你估计这个概率是多少并说明理由.(结果用分数表示) |
21. 难度:中等 | |
小明为了检验两枚六个面分别刻有点数:1、2、3、4、5、6的正六面体骰子的质量是否都合格,在相同的条件下,同时抛两枚骰子20 000次,结果发现两个朝上面的点数和是7的次数为20次.你认为这两枚骰子质量是否都合格(合格标准为:在相同条件下抛骰子时,骰子各个面朝上的机会相等),并说明理由. |
22. 难度:中等 | |
在一个不透明的盒子里,装有三个分别写有数字-1,0,1的乒乓球(形状,大小一样),先从盒子里随即取出一个乒乓球,记下数字后放回盒子,摇匀后再随即取出一个乒乓球,记下数字. (1)请用树状图或列表的方法求两次取出乒乓球上数字相同的概率; (2)求两次取出乒乓球上数字之积等于0的概率. |
23. 难度:中等 | |
中央电视台举办的第14届“蓝色经典•天之蓝”杯青年歌手大奖赛,由部队文工团的A(海政)、B(空政)、C(武警)组成种子队,由部队文工团的D(解放军)和地方文工团的E(云南)、F(新疆)组成非种子队.现从种子队A、B、C与非种子队D、E、F中各抽取一个队进行首场比赛. (1)请用适当方式写出首场比赛出场的两个队的所有可能情况(用代码A、B、C、D、E、F表示); (2)求首场比赛出场的两个队都是部队文工团的概率P? |
24. 难度:中等 | |
在“传箴言”活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行了统计,并制成了如下两幅不完整的统计图: (1)求该班团员在这一个月内所发箴言的平均条数是多少?并将该条形统计图补充完整; (2)如果发了3条箴的同学中有两位男同学,发了4条箴言的同学中有三位女同学.现要从发了3条箴和4条箴言的同学中分别选出一位参加该校团委组织的“箴言”活动总结会,请你用列表法或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率. |
25. 难度:中等 | |
小颖为学校联欢会设计了一个“配紫色”的游戏:下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,游戏者同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色. (1)利用树状图或列表的方法表示出游戏所有可能出现的结果; (2)游戏者获胜的概率是多少? |
26. 难度:中等 | |
端午节吃粽子是中华民族的传统习俗,五月初五早晨,小丽的妈妈用不透明的袋子装着一些粽子(粽子除内部馅料不同外,其他一切均相同),其中香肠馅粽子两个,还有一些绿豆馅粽子,现小丽从中任意拿出一个是香肠馅粽子的概率为. (1)求袋子中绿豆馅粽子的个数; (2)小丽第一次任意拿出一个粽子(不放回),第二次再拿出一个粽子,请你用树形图或列表法,求小丽两次拿到的都是绿豆馅粽子的概率. |
27. 难度:中等 | |
阅读对话,解答问题: (1)分别用a、b表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出(a,b)的所有取值; (2)求在(a,b)中使关于x的一元二次方程x2-ax+2b=0有实数根的概率. |
28. 难度:中等 | |
某班举行演讲革命故事的比赛中有一个抽奖活动.活动规则是:进入最后决赛的甲、乙两位同学,每人只有一次抽奖机会,在如图所示的翻奖牌正面的4个数字中任选一个数字,选中后可以得到该数字后面的奖品,第一人选中的数字,第二人就不能再选择该数字. (1)求第一位抽奖的同学抽中文具与计算器的概率分别是多少? (2)有同学认为,如果.甲先抽,那么他抽到海宝的概率会大些,你同意这种说法吗?并用列表格或画树状图的方式加以说明. |
29. 难度:中等 | |
在一个不透明的袋子中装有白色、黄色和蓝色三种颜色的小球,这些球除颜色外都相同,其中白球有2个,蓝球有1个.现从中任意摸出一个小球是白球的概率是. (1)袋子中黄色小球有______个; (2)如果第一次任意摸出一个小球(不放回),第二次再摸出一个小球,请用画树状图或列表格的方法求两次都摸出白球的概率. |
30. 难度:中等 | |
如图,A、B两个转盘分别被平均分成三个、四个扇形,分别转动A盘、B盘各一次.转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止.请用列表或画树状图的方法,求两个转盘停止后指针所指区域内的数字之和小于6的概率. |