1. 难度:中等 | |
四张大小、质地均相同的卡片上分别标有:1,2,3,4.现将标有数字的一面朝下扣在桌子上,然后由小明从中随机抽取一张(不放回),再从剩下的3张中随机取第二张. (1)用画树状图的方法,列出小明前后两次取得的卡片上所标数字的所有可能情况; (2)求取到的两张卡片上的数字之积为奇数的概率. |
2. 难度:中等 | |
小王和小明用如图所示的同一个转盘进行“配紫色”游戏,游戏规则如下:连续转动两次转盘.如果两次转出的颜色相同或配成紫色(若其中一次转盘转出蓝色,另一次转出红色,则配成紫色),则小王得1分,否则小明得1分(如果指针恰好指在分割线上,那么重转一次,直到指针指向一种颜色为止) (1)请你通过列表法分别求出小王和小明获胜的概率. (2)你认为这个游戏对双方公平吗?请说明理由;若不公平,请修改规则,使游戏对双方公平. |
3. 难度:中等 | |
某数学兴趣活动小组在上课时,老师为他们设计了一个抓奖游戏,并设置了两种抓奖方案,游戏规则是:在一个不透明箱子内放了3颗表面写有-2,-1,1且大小完全相同的小球,每个游戏者必须抓两次小球:分别以先后抓到的两个小球所标的数字作为一个点的横,纵坐标,如果这个点在第三象限则中奖. 方案一:先抓出一颗小球,放回去摇匀后再抓出一颗小球. 方案二:先抓出一颗小球且不放回摇匀后再抓出一颗小球 (1)请你计算(列表或画树状图)方案一的中奖概率; (2)请直接写出方案二的中奖概率,如果你在做这个游戏,你会选择方案几?说明理由. |
4. 难度:中等 | |
下面三张卡片上分别写有一个整式,把它的背面向上洗匀,从中随机抽取一张卡片,再从剩下的卡片中随机抽取一张,用列表或树形图求抽取的两张卡片上的整式的积可以化为二次三项式的概率是多少? |
5. 难度:中等 | |
一不透明纸箱中装有形状,大小,质地等完全相同的4个小球,分别标有数字1,2,3,4. (1)从纸箱中随机地一次取出两个小球,求这两个小球上所标的数字一个是奇数另一个是偶数的概率; (2)先从纸箱中随机地取出一个小球,用小球上所标的数字作为十位上的数字;将取出的小球放回后,再随机地取出一个小球,用小球上所标的数字作为个位上的数字,则组成的两位数恰好能被3整除的概率是多少?试用树状图或列表法加以说明. |
6. 难度:中等 | |
某商场开展购物抽奖活动,抽奖箱中有4个标号分别为1,2,3,4的质地、大小相同的小球,顾客任意摸取一个小球,然后放回,再摸取一个小球,若两次摸出的数字之和为“8”是一等奖,数字之和为“6”是二等奖,数字之和为其它数字则是三等奖,请分别求出顾客抽中一、二、三等奖的概率. |
7. 难度:中等 | |
如图,有4张卡片(形状、大小和质地都相同),正面分别写有字母A、B、C、D和一个算式.将这四张卡片背面向上洗匀,从中随机抽取一张,记录字母后放回,重新洗匀再从中随机抽取一张,记录字母. (1)用树状图或列表法表示两次抽取卡片可能出现的所有情况;(卡片可用A、B、C、D表示,画数状图或列表时用0.5毫米黑色签字笔.) (2)分别求抽取的两张卡片上算式都正确的概率和只有一个算式正确的概率. |
8. 难度:中等 | |
甲同学口袋中有三张卡片,分别写着数字1、1、2,乙同学口袋中也有三张卡片,分别写着数字1、2、2,两人各自从自己的口袋中随机摸出一张卡片,若两人摸出的卡片上的数字之和为偶数,则甲胜,否则乙胜.求甲胜的概率. |
9. 难度:中等 | |
如图,放在直角坐标系中的正方形ABCD的边长为4.现做如下实验:转盘被划分成4个相同的小扇形,并分别标上数字1,2,3,4,分别转动两次转盘,转盘停止后,指针所指向的数字作为直角坐标系中M点的坐标(第一次作横坐标,第二次作纵坐标),指针如果指向分界线上,则重新转动转盘. (1)请你用树状图或列表的方法,求M点落在正方形ABCD面上(含内部与边界)的概率; (2)将正方形ABCD平移整数个单位,则是否存在某种平移,使点M落在正方形ABCD面上的概率为?若存在,指出一种具体的平移过程;若不存在,请说明理由. |
10. 难度:中等 | |
一枚质量均匀的正方体骰子,六个面上分别标有数字1,2,3,4,5,6,连续抛掷两次. (1)用列表法或树状图表示出朝上的面上的数字所有可能出现的结果; (2)记两次朝上的面上的数字分别为p,q,若把p,q分别作为点A的横坐标和纵坐标,求点A(p,q)在函数的图象上的概率. |
11. 难度:中等 | |
有两张背面相同的纸牌,其正面分别是正三角形和圆,将这两张纸牌背面朝上洗匀后摸出一张,放回洗匀后,再摸出一张. (1)写出两次摸牌出现的所有可能的结果; (2)求两次摸出都是圆的概率. |
12. 难度:中等 | |
如图,有两个可以自由转动的均匀转盘A、B,都被分成3等份,每份内均有数字,小明和小亮用这两个转盘做游戏,游戏规则如下:分别转动转盘A和B,两个转盘停止后,将两个指针所指份内的数字相加(如果指针恰好停在等分线上,那么重转一次,直到指针指向某一份为止),若和为偶数,则小明获胜;如果和为奇数,那么小亮获胜. 把下列树状图补充完整,并求小明获胜的概率. |
13. 难度:中等 | |
一个不透明的口袋里装有红、黄、绿三种颜色的球(除颜色不同外其余都相同),其中红球有2个,黄球有1个,从中任意捧出1球是红球的概率为. (1)试求袋中绿球的个数; (2)第1次从袋中任意摸出1球(不放回),第2次再任意摸出1球,请你用画树状图或列表格的方法,求两次都摸到红球的概率. |
14. 难度:中等 | |
袋中有2个红球、1个白球,它们除颜色外完全相同. (1)求从袋中任意取出1球是红球的概率; (2)先从袋中任意取出1球,然后放回,再从袋中任意取出1球,请用画树状图或列表格法求两次都取到红球的概率. |
15. 难度:中等 | |
如图所示,有一电路AB是由图示的开关控制,任意地闭合两个开关,使电路形成通路. (1)请你补全树状图. (2)求出使电路形成通路的概率. |
16. 难度:中等 | |
某商场搞摸奖促销活动:商场在一只不透明的箱子里放了三个相同的小球,球上分别写有“10元”、“20元”、“30元”的字样.规定:顾客在本商场同一日内,每消费满100元,就可以在这只箱子里摸出一个小球(顾客每次摸出小球看过后仍然放回箱内搅匀),商场根据顾客摸出小球上所标金额就送上一份相应的奖品.现有一顾客在该商场一次性消费了235元,按规定,该顾客可以摸奖两次,求该顾客两次摸奖所获奖品的价格之和超过40元的概率. |
17. 难度:中等 | |
甲、乙、丙三位同学用质地、大小完全一样的纸片分别制作一张卡片a、b、c,收集后放在一个不透明的箱子中,然后每人从箱子中随机抽取一张. (1)用列表或画树状图的方法表示三位同学抽到卡片的所有可能的结果; (2)求三位同学中至少有一人抽到自己制作卡片的概率. |
18. 难度:中等 | |
不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球2个(分别标有1号、2号),蓝球1个.若从中任意摸出一个球,它是蓝球的概率为. (1)求袋中黄球的个数; (2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用画树状图或列表格的方法,求两次摸到不同颜色球的概率. |
19. 难度:中等 | |
在试制某种洗发液新品种时,需要选用两种不同的添加剂.现有芳香度分别为0,1,2,3,4,5的六种添加剂可供选用.根据试验设计原理,通常要先从芳香度为0,1,2的三种添加剂中随机选取一种,再从芳香度为3,4,5的三种添加剂中随机选取一种,进行搭配试验.请你利用树状图(树形图)或列表的方法,表示所选取两种不同添加剂所有可能出现的结果,并求出芳香度之和等于4的概率. |
20. 难度:中等 | |
初三年(1)班要举行一场毕业联欢会,规定每个同学同时转动下图中①、②两个转盘(每个转盘分别被二等分和三等分),若两个转盘停止后指针所指的数字之和为奇数,则这个同学要表演唱歌节目;若数字之和为偶数,则要表演其他节目.试求出这个同学表演唱歌节目的概率(要求用树状图或列表方法求解). |
21. 难度:中等 | |
从车站到书城有A1,A2,A3,A4四条路线可走,从书城到广场有B1,B2,B3三条路线可走,现让你随机选择一条从车站出发经过书城到达广场的行走路线. (1)画树状图分析你所有可能选择的路线; (2)你恰好选到经过路线B1的概率是多少? |
22. 难度:中等 | |
如图,经过某十字路口的汽车,它可能选择道路A,可能选择道路B,也可能选择道路C,且三种可能性大小相同,现有甲、乙二辆汽车同向同时到达同一路口. (1)请用列表法或树形图,分析二辆车选择道路行驶的所有可能的结果; (2)求二辆车经过该十字路口时,选择道路相同的概率及选择道路不相同的概率. |
23. 难度:中等 | |
将A,B,C,D四人随机分成甲、乙两组参加羽毛球比赛,每组两人. (1)A在甲组的概率是多少? (2)A,B都在甲组的概率是多少? |
24. 难度:中等 | |
下面三张卡片上分别写有一个等式,把它们背面朝上洗匀,小明闭上眼睛,从中随机抽取一张卡片,再从剩下的卡片中随机抽取另一张.第一次抽取的卡片上的整式做分子,第二次抽取的卡片上的整式做分母,用列表法或树形图法求能组成分式的概率是多少? |
25. 难度:中等 | |
九年级1班将竞选出正、副班长各1名,现有甲、乙两位男生和丙、丁两位女生参加竞选. (1)男生当选班长的概率是______; (2)请用列表或画树状图的方法求出两位女生同时当选正、副班长的概率. |
26. 难度:中等 | |
在课外活动时间,小王、小丽、小华做“互相踢踺子”游戏,踺子从一人传到另一人就记为踢一次. (1)若从小丽开始,经过两次踢踺后,踺子踢到小华处的概率是多少?(用树状图或列表法说明) (2)若经过三次踢踺后,踺子踢到小王处的可能性最小,应确定从谁开始踢,并说明理由. |
27. 难度:中等 | |
将背面相同,正面分别标有数字1,2,3,4的四张卡片洗匀后,背面朝上放在桌面上. (1)从中随机抽取一张卡片,求该卡片正面上的数字是偶数的概率; (2)先从中随机抽取一张卡片(不放回),将该卡片正面上的数字作为十位上的数字;再随机抽取一张,将该卡片正面上的数字作为个位上的数字,则组成的两位数恰好是4的倍数的概率是多少?请用树状图或列表法加以说明. |
28. 难度:中等 | |
水果种植大户小方,为了吸引更多的顾客,组织了观光采摘游活动.每一位来采摘水果的顾客都有一次抽奖机会:在一只不透明的盒子里有A,B,C,D四张外形完全相同的卡片,抽奖时先随机抽出一张卡片,再从盒子中剩下的3张中随机抽取第二张. (1)请利用树状图(或列表)的方法,表示前后两次抽得的卡片所有可能的情况; (2)如果抽得的两张卡片是同一种水果图片就可获得奖励,那么得到奖励的概率是多少? |
29. 难度:中等 | |
亲爱的同学,下面我们来做一个猜颜色的游戏:一个不透明的小盒中,装有A、B、C三张除颜色以外完全相同的卡片,卡片A两面均为红,卡片B两面均为绿,卡片C一面为红,一面为绿. (1)从小盒中任意抽出一张卡片放到桌面上,朝上一面恰好是绿色,请你猜猜,抽出哪张卡片的概率为0; (2)若要你猜(1)中抽出的卡片朝下一面是什么颜色,猜哪种颜色正确率可能高一些?请你列出表格,用概率的知识予以说明. |
30. 难度:中等 | |
一个不透明的盒子中放有四张分别写有数字1,2,3,4的红色卡片和三张分别写有数字1,2,3的蓝色卡片,卡片除颜色和数字外完全相同. (1)从中任意抽取一张卡片,求该卡片上写有数字1的概率; (2)将3张蓝色卡片取出后放入另外一个不透明的盒子内,然后在两个盒子内各任意抽取一张卡片,以红色卡片上的数字作为十位数,蓝色卡片上的数字作为个位数组成一个两位数,求这个两位数大于22的概率. |