1. 难度:中等 | |
函数y=(x-1)2+1的最小值y等于 . |
2. 难度:中等 | |
如图1,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=1,OC=2,点D在边OC上且OD=. (1)求直线AC的解析式; (2)在y轴上是否存在点P,直线PD与矩形对角线AC交于点M,使得△DMC为等腰三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由. (3)抛物线y=-x2经过怎样平移,才能使得平移后的抛物线过点D和点E(点E在y轴的正半轴上),且△ODE沿DE折叠后点O落在边AB上O′处. |
3. 难度:中等 | |
已知抛物线y=x2-2x-3与x轴的右交点为A,与y轴的交点为B,求经过A、B两点的直线的解析式. |
4. 难度:中等 | |
已知二次函数y=-x2-2x+3的图象与x轴相交于A、B两点,与y轴交于C点(如图所示),点D在二次函数的图象上,且D与C关于对称轴对称,一次函数的图象过点B、D; (1)求点D的坐标; (2)求一次函数的解析式; (3)根据图象写出使一次函数值大于二次函数值的x的取值范围. |
5. 难度:中等 | |
如图,曲线C是函数y=在第一象限内的图象,抛物线是函数y=-x2-2x+4的图象.点Pn(x,y)(n=1,2,…)在曲线C上,且x,y都是整数. (1)求出所有的点Pn(x,y); (2)在Pn中任取两点作直线,求所有不同直线的条数; (3)从(2)的所有直线中任取一条直线,求所取直线与抛物线有公共点的概率. |
6. 难度:中等 | |
阅读以下材料: 对于三个数a、b、c,用M(a,b,c)表示这三个数的平均数,用min(a,b,c)表示这三个数中最小的数.例如:M{-1,2,3}=;min{-1,2,3}=-1;min{-1,2,a}=a(a≤-1);-1(a>-1) 解决下列问题: (1)填空:min{sin30°,cos45°,tan30°}=______,如果min{2,2x+2,4-2x}=2,则x的取值范围为______≤x≤______; (2)①如果M{2,x+1,2x}=min{2,x+1,2x},求x. ②根据①,你发现了结论“如果M{a,b,c}=min{a,b,c},那么______(填a,b,c的大小关系)”, 证明你发现的结论. ③运用②的结论,填空:若M{2x+y+2,x+2y,2x-y}=min{2x+y+2,x+2y,2x-y},则x+y=______; (3)在同一直角坐标系中作出函数y=x+1,y=(x+1)2,y=2-x的图象(不需列表描点),通过观察图象,填空:min{x+1,(x-1)2,2-x}的最大值为______. |
7. 难度:中等 | |||||||||||||||||||||||||||||||||||||||||||||||||
小明为了通过描点法作出函数y=x2-x+1的图象,先取自变量x的7个值满足: x2-x1=x3-x2=…=x7-x6=d,再分别算出对应的y值,列出表:
(1)判断s1、s2、s3之间关系,并说明理由; (2)若将函数“y=x2-x+1”改为“y=ax2+bx+c(a≠0)”,列出表:
(3)小明为了通过描点法作出函数y=ax2+bx+c(a≠0)的图象,列出表:
|
8. 难度:中等 | |
抛物线y=-x2+(m-1)x+m与y轴交于(0,3)点. (1)求出m的值并画出这条抛物线; (2)求它与x轴的交点和抛物线顶点的坐标; (3)x取什么值时,抛物线在x轴上方? (4)x取什么值时,y的值随x值的增大而减小? |
9. 难度:中等 | |
已知二次函数y=ax2+bx+c. (1)当a=1,b=-2,c=1时,请在图上的直角坐标系中画出此时二次函数的图象; (2)用配方法求该二次函数的图象的顶点坐标. |
10. 难度:中等 | |
对非负实数x“四舍五入”到个位的值记为<x>, 即:当n为非负整数时,如果则<x>=n. 如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,… 试解决下列问题: (1)填空:①<π>=______(π为圆周率); ②如果<2x-1>=3,则实数x的取值范围为______; (2)①当x≥0,m为非负整数时,求证:<x+m>=m+<x>; ②举例说明<x+y>=<x>+<y>不恒成立; (3)求满足<x>=的所有非负实数x的值; (4)设n为常数,且为正整数,函数的自变量x在n≤x<n+1范围内取值时,函数值y为整数的个数记为a,满足<>=n的所有整数k的个数记为b.求证:a=b=2n. |
11. 难度:中等 | |||||||||||||||||
已知抛物线y=-x2+2x+2. (1)该抛物线的对称轴是______,顶点坐标______; (2)选取适当的数据填入下表,并在图7的直角坐标系内描点画出该抛物线的图象;
|
12. 难度:中等 | |
已知抛物线y=ax2+bx经过点A(-3,-3)和点P(t,0),且t≠0. (1)若该抛物线的对称轴经过点A,如图,请通过观察图象,指出此时y的最小值,并写出t的值; (2)若t=-4,求a、b的值,并指出此时抛物线的开口方向; (3)直接写出使该抛物线开口向下的t的一个值. |
13. 难度:中等 | |
已知,在同一直角坐标系中,反比例函数y=与二次函数y=-x2+2x+c的图象交于点A(-1,m). (1)求m、c的值; (2)求二次函数图象的对称轴和顶点坐标. |
14. 难度:中等 | |
已知抛物线y=4x2-11x-3. (Ⅰ)求它的对称轴; (Ⅱ)求它与x轴、y轴的交点坐标. |
15. 难度:中等 | |
如图抛物线y=ax2-5ax+4a与x轴相交于点A、B,且过点C(5,4). (1)求a的值和该抛物线顶点P的坐标. (2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的解析式. |
16. 难度:中等 | |
(1)请在坐标系中画出二次函数y=-x2+2x的大致图象; (2)在同一个坐标系中画出y=-x2+2x的图象向上平移两个单位后的图象; (3)直接写出平移后的图象的解析式. 注:图中小正方形网格的边长为1. |
17. 难度:中等 | |
如图1,在平面直角坐标系中,点A的坐标为(1,-2),点B的坐标为(3,-1),二次函数y=-x2的图象为l1. (1)平移抛物线l1,使平移后的抛物线过点A,但不过点B,写出平移后的抛物线的一个解析式(任写一个即可); (2)平移抛物线l1,使平移后的抛物线过A、B两点,记抛物线为l2,如图2,求抛物线l2的函数解析式及顶点C的坐标; (3)设P为y轴上一点,且S△ABC=S△ABP,求点P的坐标; (4)请在图2上用尺规作图的方式探究抛物线l2上是否存在点Q,使△QAB为等腰三角形?若存在,请判断点Q共有几个可能的位置(保留作图痕迹);若不存在,请说明理由. |
18. 难度:中等 | |
已知二次函数y=x2-2x-1. (1)求此二次函数的图象与x轴的交点坐标; (2)二次函数y=x2的图象如图所示,将y=x2的图象经过怎样的平移,就可以得到二次函数y=x2-2x-1的图象.(参考:二次函数y=ax2+bx+c图象的顶点坐标是() |
19. 难度:中等 | |
已知点A(-2,-c)向右平移8个单位得到点A′,A与A′两点均在抛物线y=ax2+bx+c上,且这条抛物线与y轴的交点的纵坐标为-6,求这条抛物线的顶点坐标. |
20. 难度:中等 | |
如图,抛物线y1=-x2+2向右平移1个单位得到抛物线y2,回答下列问题: (1)抛物线y2的顶点坐标______; (2)阴影部分的面积S=______; (3)若再将抛物线y2绕原点O旋转180°得到抛物线y3,求抛物线y3的解析式. |
21. 难度:中等 | |
如图,直角△ABC中,∠C=90°,,,点P为边BC上一动点,PD∥AB,PD交AC于点D,连接AP. (1)求AC、BC的长; (2)设PC的长为x,△ADP的面积为y.当x为何值时,y最大,并求出最大值. |
22. 难度:中等 | |
如图,在△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,且CD=3cm.动点P、Q分别从A、C两点同时出发,其中点P以1cm/s的速度沿AC向终点C移动;点Q以cm/s的速度沿CB向终点B移动.过P作PE∥CB交AD于点E,设动点的运动时间为x秒. (1)用含x的代数式表示EP; (2)当Q在线段CD上运动几秒时,四边形PEDQ是平行四边形; (3)当Q在线段BD(不包括点B、点D)上运动时,求四边形EPDQ面积的最大值. |
23. 难度:中等 | |
如图所示,P是△ABC边AC上的动点,以P为顶点作矩形PDEF,顶点D,E在边BC上,顶点F在边AB上;△ABC的底边BC及BC上的高的长分别为a,h,且是关于x的一元二次方程mx2+nx+k=0的两个实数根,设过D,E,F三点的⊙O的面积为S⊙O,矩形PDEF的面积为S矩形PDEF. (1)求证:以a+h为边长的正方形面积与以a、h为边长的矩形面积之比不小于4; (2)求的最小值; (3)当的值最小时,过点A作BC的平行线交直线BP与Q,这时线段AQ的长与m,n,k的取值是否有关?请说明理由. |
24. 难度:中等 | |
在△ABC中,∠C=90°,AC=3,BC=4,CD是斜边AB上的高,点E在斜边AB上,过点E作直线与△ABC的直角边相交于点F,设AE=x,△AEF的面积为y. (1)求线段AD的长; (2)若EF⊥AB,当点E在线段AB上移动时, ①求y与x的函数关系式(写出自变量x的取值范围) ②当x取何值时,y有最大值?并求其最大值; (3)若F在直角边BC上(点F与B、C两点均不重合),点E在斜边AB上移动,试问:是否存在直线EF将△ABC的周长和面积同时平分?若存在直线EF,求出x的值;若不存在直线EF,请说明理由. |
25. 难度:中等 | |
如图,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5). (1)求证:△ACD∽△BAC; (2)求DC的长; (3)设四边形AFEC的面积为y,求y关于t的函数关系式,并求出y的最小值. |
26. 难度:中等 | |
如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P从B向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B以Q,P为对称中心的对称点,HQ⊥AB于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y. (1)求证:△DHQ∽△ABC; (2)求y关于x的函数解析式并求y的最大值; (3)当x为何值时,△HDE为等腰三角形? |
27. 难度:中等 | |
自选题: 如图,已知在矩形ABCD中,AB=2,BC=3,P是线段AD边上的任意一点(不含端点A、D),连接PC,过点P作PE⊥PC交AB于E. (1)在线段AD上是否存在不同于P的点Q,使得QC⊥QE?若存在,求线段AP与AQ之间的数量关系;若不存在,请说明理由; (2)当点P在AD上运动时,对应的点E也随之在AB上运动,求BE的取值范围. |
28. 难度:中等 | |
已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上.∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm. 如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿BA向点A匀速移动.当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移动、DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0<t<4.5)解答下列问题: (1)当t为何值时,点A在线段PQ的垂直平分线上? (2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式;是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由; (3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由. |
29. 难度:中等 | |
如图,将OA=6,AB=4的矩形OABC放置在平面直角坐标系中,动点M、N以每秒1个单位的速度分别从点A、C同时出发,其中点M沿AO向终点O运动,点N沿CB向终点B运动,当两个动点运动了t秒时,过点N作NP⊥BC,交OB于点P,连接MP. (1)点B的坐标为______;用含t的式子表示点P的坐标为______; (2)记△OMP的面积为S,求S与t的函数关系式(0<t<6);并求t为何值时,S有最大值? (3)试探究:当S有最大值时,在y轴上是否存在点T,使直线MT把△ONC分割成三角形和四边形两部分,且三角形的面积是△ONC面积的?若存在,求出点T的坐标;若不存在,请说明理由. |
30. 难度:中等 | |
如图,在梯形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,∠DCB=30°.点E、F同时从B点出发,沿射线BC向右匀速移动.已知F点移动速度是E点移动速度的2倍,以EF为一边在CB的上方作等边△EFG.设E点移动距离为x(x>0). (1)△EFG的边长是______(用含有x的代数式表示),当x=2时,点G的位置在______; (2)若△EFG与梯形ABCD重叠部分面积是y,求: ①当0<x≤2时,y与x之间的函数关系式; ②当2<x≤6时,y与x之间的函数关系式; (3)探求(2)中得到的函数y在x取含何值时,存在最大值,并求出最大值. |