1. 难度:中等 | |
将直角边长为6的等腰Rt△AOC放在如图所示的平面直角坐标系中,点O为坐标原点,点C、A分别在x、y轴的正半轴上,一条抛物线经过点A、C及点B(-3,0). (1)求该抛物线的解析式; (2)若点P是线段BC上一动点,过点P作AB的平行线交AC于点E,连接AP,当△APE的面积最大时,求点P的坐标; (3)在第一象限内的该抛物线上是否存在点G,使△AGC的面积与(2)中△APE的最大面积相等?若存在,请求出点G的坐标;若不存在,请说明理由. |
2. 难度:中等 | |
已知:函数y=ax2+x+1的图象与x轴只有一个公共点. (1)求这个函数关系式; (2)如图所示,设二次函数y=ax2+x+1图象的顶点为B,与y轴的交点为A,P为图象上的一点,若以线段PB为直径的圆与直线AB相切于点B,求P点的坐标; (3)在(2)中,若圆与x轴另一交点关于直线PB的对称点为M,试探索点M是否在抛物线y=ax2+x+1上?若在抛物线上,求出M点的坐标;若不在,请说明理由. |
3. 难度:中等 | |
如图,已知抛物线y=x2+bx-3a过点A(1,0),B(0,-3),与x轴交于另一点C. (1)求抛物线的解析式; (2)若在第三象限的抛物线上存在点P,使△PBC为以点B为直角顶点的直角三角形,求点P的坐标; (3)在(2)的条件下,在抛物线上是否存在一点Q,使以P,Q,B,C为顶点的四边形为直角梯形?若存在,请求出点Q的坐标;若不存在,请说明理由. |
4. 难度:中等 | |
如图①,梯形ABCD中,∠C=90°.动点E、F同时从点B出发,点E沿折线BA-AD-DC运动到点C时停止运动,点F沿BC运动到点C时停止运动,它们运动时的速度都是1cm/s.设E、F出发ts时,△EBF的面积为ycm2.已知y与t的函数图象如图②所示,其中曲线OM为抛物线的一部分,MN、NP为线段.请根据图中的信息,解答下列问题: (1)梯形上底的长AD=______cm,梯形ABCD的面积______cm2; (2)当点E在BA、DC上运动时,分别求出y与t的函数关系式(注明自变量的取值范围); (3)当t为何值时,△EBF与梯形ABCD的面积之比为1:2? |
5. 难度:中等 | |
如图,已知二次函数y=的图象与y轴交于点A,与x轴交于B、C两点,其对称轴与x轴交于点D,连接AC. (1)点A的坐标为______,点C的坐标为______; (2)线段AC上是否存在点E,使得△EDC为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由; (3)点P为x轴上方的抛物线上的一个动点,连接PA、PC,若所得△PAC的面积为S,则S取何值时,相应的点P有且只有2个? |
6. 难度:中等 | |
如图,已知二次函数图象的顶点坐标为(2,0),直线y=x+1与二次函数的图象交于A,B两点,其中点A在y轴上. (1)二次函数的解析式为y=______; (2)证明:点(-m,2m-1)不在(1)中所求的二次函数的图象上; (3)若C为线段AB的中点,过C点作CE⊥x轴于E点,CE与二次函数的图象交于D点. ①y轴上存在点K,使以K,A,D,C为顶点的四边形是平行四边形,则K点的坐标是______; ②二次函数的图象上是否存在点p,使得S三角形POE=2S三角形ABD?求出P点坐标;若不存在,请说明理由. |
7. 难度:中等 | |
如图,四边形ABCO是平行四边形,AB=4,OB=2,抛物线过A、B、C三点,与x轴交于另一点D.一动点P以每秒1个单位长度的速度从B点出发沿BA向点A运动,运动到A停止,同时一动点Q从点D出发,以每秒3个单位长度的速度沿DC向点C运动,与点P同时停止. (1)求抛物线的解析式; (2)若抛物线的对称轴与AB交于点E,与x轴交于点F,当点P运动时间t为何值时,四边形POQE是等腰梯形? (3)当t为何值时,以P、B、O为顶点的三角形与以点Q、B、O为顶点的三角形相似? |
8. 难度:中等 | |
如图,已知抛物线y=ax2-4x+c经过点A(0,-6)和B(3,-9). (1)求出抛物线的解析式; (2)写出抛物线的对称轴方程及顶点坐标; (3)点P(m,m)与点Q均在抛物线上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q的坐标; (4)在满足(3)的情况下,在抛物线的对称轴上寻找一点M,使得△QMA的周长最小. |
9. 难度:中等 | |
如图,直线y=-x+6与x轴交于点A,与y轴交于点B,以线段AB为直径作⊙C,抛物线y=ax2+bx+c过A、C、O三点. (1)求点C的坐标和抛物线的解析式; (2)过点B作直线与x轴交于点D,且OB2=OA•OD,求证:DB是⊙C的切线; (3)抛物线上是否存在一点P,使以P、O、C、A为顶点的四边形为直角梯形?如果存在,求出点P的坐标;如果不存在,请说明理由. |
10. 难度:中等 | |
在平面直角坐标系中,点O是坐标原点,点P(m,-1)(m>0).连接OP,将线段OP绕点O按逆时针方向旋转90°得到线段OM,且点M是抛物线y=ax2+bx+c的顶点. (1)若m=1,抛物线y=ax2+bx+c经过点(2,2),当0≤x≤1时,求y的取值范围; (2)已知点A(1,0),若抛物线y=ax2+bx+c与y轴交于点B,直线AB与抛物线y=ax2+bx+c有且只有一个交点,请判断△BOM的形状,并说明理由. |
11. 难度:中等 | |
如图,抛物线y1=ax2-2ax+b经过A(-1,0),C(0,)两点,与x轴交于另一点B. (1)求此抛物线的解析式; (2)若抛物线的顶点为M,点P为线段OB上一动点(不与点B重合),点Q在线段MB上移动,且∠MPQ=45°,设线段OP=x,MQ=y2,求y2与x的函数关系式,并直接写出自变量x的取值范围; (3)在同一平面直角坐标系中,两条直线x=m,x=n分别与抛物线交于点E、G,与(2)中的函数图象交于点F、H.问四边形EFHG能否成为平行四边形?若能,求m、n之间的数量关系;若不能,请说明理由. |
12. 难度:中等 | |
如图,在平面直角坐标系中放置一矩形ABCO,其顶点为A(0,1)、B(-3,1)、C(-3,0)、O(0,0).将此矩形沿着过E(-,1)、F(-,0)的直线EF向右下方翻折,B、C的对应点分别为B′、C′. (1)求折痕所在直线EF的解析式; (2)一抛物线经过B、E、B′三点,求此二次函数解析式; (3)能否在直线EF上求一点P,使得△PBC周长最小?如能,求出点P的坐标;若不能,说明理由. |
13. 难度:中等 | |
如图,矩形ABCD的顶点A、B的坐标分别为(-4,0)和(2,0),BC=.设直线AC与直线x=4交于点E. (1)求以直线x=4为对称轴,且过C与原点O的抛物线的函数关系式,并说明此抛物线一定过点E; (2)设(1)中的抛物线与x轴的另一个交点为N,M是该抛物线上位于C、N之间的一动点,求△CMN面积的最大值. |
14. 难度:中等 | |
已知二次函数y=ax2+bx+c(a≠0)的图象经过O(0,0),M(1,1)和N(n,0) (n≠0)三点. (1)若该函数图象顶点恰为M点,写出此时n的值及y的最大值; (2)当n=-2时,确定这个二次函数的解析式,并判断此时y是否有最大值; (3)由(1)、(2)可知,n的取值变化,会影响该函数图象的开口方向.请求出n满足什么条件时,y有最小值. |
15. 难度:中等 | |
如图,抛物线y=ax2+bx经过点A(4,0),B(2,2).连接OB,AB. (1)求该抛物线的解析式; (2)求证:△OAB是等腰直角三角形; (3)将△OAB绕点O按顺时针方向旋转135°得到△OA′B′,写出△OA′B′的边A′B′的中点P的坐标.试判断点P是否在此抛物线上,并说明理由. |
16. 难度:中等 | |
如图所示,抛物线与x轴交于点A(-1,0)、B(3,0)两点,与y轴交于点C(0,-3).以AB为直径作⊙M,过抛物线上一点P作⊙M的切线PD,切点为D,并与⊙M的切线AE相交于点E,连接DM并延长交⊙M于点N,连接AN、AD. (1)求抛物线所对应的函数关系式及抛物线的顶点坐标; (2)若四边形EAMD的面积为,求直线PD的函数关系式; (3)抛物线上是否存在点P,使得四边形EAMD的面积等于△DAN的面积?若存在,求出点P的坐标;若不存在,说明理由. |
17. 难度:中等 | |
(1)探究新知: ①如图1,已知AD∥BC,AD=BC,点M,N是直线CD上任意两点. 求证:△ABM与△ABN的面积相等. ②如图2,已知AD∥BE,AD=BE,AB∥CD∥EF,点M是直线CD上任一点,点G是直线EF上任一点,试判断△ABM与△ABG的面积是否相等,并说明理由. (2)结论应用: 如图3,抛物线y=ax2+bx+c的顶点为C(1,4),交x轴于点A(3,0),交y轴于点D,试探究在抛物线y=ax2+bx+c上是否存在除点C以外的点E,使得△ADE与△ACD的面积相等?若存在,请求出此时点E的坐标;若不存在,请说明理由. |
18. 难度:中等 | |
如图,已知抛物线y=+bx+c与y轴相交于C,与x轴相交于A、B,点A的坐标为(2,0),点C的坐标为(0,-1). (1)求抛物线的解析式; (2)点E是线段AC上一动点,过点E作DE⊥x轴于点D,连接DC,当△DCE的面积最大时,求点D的坐标; (3)在直线BC上是否存在一点P,使△ACP为等腰三角形?若存在,求点P的坐标;若不存在,说明理由. |
19. 难度:中等 | |
如图,在平面直角坐标系中,已知点A、B、C的坐标分别为(-1,0),(5,0),(0,2). (1)求过A、B、C三点的抛物线解析式; (2)若点P从A点出发,沿x轴正方向以每秒1个单位长度的速度向B点移动,连接PC并延长到点E,使CE=PC,将线段PE绕点P顺时针旋转90°得到线段PF,连接FB.若点P运动的时间为t秒,(0≤t≤6)设△PBF的面积为S; ①求S与t的函数关系式; ②当t是多少时,△PBF的面积最大,最大面积是多少? (3)点P在移动的过程中,△PBF能否成为直角三角形?若能,直接写出点F的坐标;若不能,请说明理由. |
20. 难度:中等 | |
在平面直角坐标系中,已知抛物线y=-x2+bx+c与x轴交于点A、B点A在点B的左侧,与y轴的正半轴交于点C,顶点为E. (1)若b=2,c=3,求此时抛物线顶点E的坐标; (2)将(1)中的抛物线向下平移,若平移后,在四边形ABEC中满足S△BCE=S△ABC,求此时直线BC的解析式; (3)将(1)中的抛物线作适当的平移,若平移后,在四边形ABEC中满足S△BCE=2S△AOC,且顶点E恰好落在直线y=-4x+3上,求此时抛物线的解析式. |
21. 难度:中等 | |
如图,抛物线y=-x2+c与x轴交于点A、B,且经过点D(-) (1)求c; (2)若点C为抛物线上一点,且直线AC把四边形ABCD分成面积相等的两部分,试说明AC平分BD,且求出直线AC的解析式; (3)x轴上方的抛物线y=-x2+c上是否存在两点P、Q,满足Rt△AQP全等于Rt△ABP?若存在,求出P、Q两点;若不存在,请说明理由. |
22. 难度:中等 | |
已知抛物线y=x2+bx+c交x轴于A(1,0)、B(3,0)两点,交y轴于点C,其顶点为D. (1)求b、c的值并写出抛物线的对称轴; (2)连接BC,过点O作直线OE⊥BC交抛物线的对称轴于点E.求证:四边形ODBE是等腰梯形; (3)抛物线上是否存在点Q,使得△OBQ的面积等于四边形ODBE的面积的?若存在,求点Q的坐标;若不存在,请说明理由. |
23. 难度:中等 | |
如图,以A为顶点的抛物线与y轴交于点B、已知A、B两点的坐标分别为(3,0)、(0,4). (1)求抛物线的解析式; (2)设M(m,n)是抛物线上的一点(m、n为正整数),且它位于对称轴的右侧.若以M、B、O、A为顶点的四边形四条边的长度是四个连续的正整数,求点M的坐标; (3)在(2)的条件下,试问:对于抛物线对称轴上的任意一点P,PA2+PB2+PM2>28是否总成立?请说明理由. |
24. 难度:中等 | |
已知:抛物线y=(k-1)x2+2kx+k-2与x轴有两个不同的交点. (1)求k的取值范围; (2)当k为整数,且关于x的方程3x=kx-1的解是负数时,求抛物线的解析式; (3)在(2)的条件下,若在抛物线和x轴所围成的封闭图形内画出一个最大的正方形,使得正方形的一边在x轴上,其对边的两个端点在抛物线上,试求出这个最大正方形的边长? |
25. 难度:中等 | |
如图1,在平面直角坐标系中,抛物线y=ax2+c与x轴正半轴交于点F(16,0),与y轴正半轴交于点E(0,16),边长为16的正方形ABCD的顶点D与原点O重合,顶点A与点E重合,顶点C与点F重合. (1)求抛物线的函数表达式; (2)如图2,若正方形ABCD在平面内运动,并且边BC所在的直线始终与x轴垂直,抛物线始终与边AB交于点P且同时与边CD交于点Q(运动时,点P不与A,B两点重合,点Q不与C,D两点重合).设点A的坐标为(m,n)(m>0). ①当PO=PF时,分别求出点P和点Q的坐标; ②在①的基础上,当正方形ABCD左右平移时,请直接写出m的取值范围; ③当n=7时,是否存在m的值使点P为AB边的中点?若存在,请求出m的值;若不存在,请说明理由. |
26. 难度:中等 | |
如图所示,抛物线y=ax2+c(a>0)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A(-2,0),B(-1,-3). (1)求抛物线的解析式; (2)点M为y轴上任意一点,当点M到A,B两点的距离之和为最小时,求此时点M的坐标; (3)在第(2)问的结论下,抛物线上的点P使S△PAD=4S△ABM成立,求点P的坐标. |
27. 难度:中等 | |
如图,已知直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于E和F. (1)求经过A、B、C三点的抛物线的解析式; (2)当BE经过(1)中抛物线的顶点时,求CF的长; (3)连接EF,设△BEF与△BFC的面积之差为S,问:当CF为何值时S最小,并求出这个最小值. |
28. 难度:中等 | |
如图,设抛物线C1:y=a(x+1)2-5,C2:y=-a(x-1)2+5,C1与C2的交点为A,B,点A的坐标是(2,4),点B的横坐标是-2. (1)求a的值及点B的坐标; (2)点D在线段AB上,过D作x轴的垂线,垂足为点H,在DH的右侧作正三角形DHG.记过C2顶点M的直线为l,且l与x轴交于点N. ①若l过△DHG的顶点G,点D的坐标为(1,2),求点N的横坐标; ②若l与△DHG的边DG相交,求点N的横坐标的取值范围. |
29. 难度:中等 | |
如图,抛物线与x轴相交于点A、B,与y轴相交于点C,顶点为点D,对称轴l与直线BC相交于点E,与x轴相交于点F. (1)求直线BC的解析式; (2)设点P为该抛物线上的一个动点,以点P为圆心,r为半径作⊙P ①当点P运动到点D时,若⊙P与直线BC相交,求r的取值范围; ②若r=,是否存在点P使⊙P与直线BC相切?若存在,请求出点P的坐标;若不存在,请说明理由. 提示:抛物线y=ax2+bx+x(a≠0)的顶点坐标(),对称轴x=. |
30. 难度:中等 | |
如图,已知平面直角坐标系xOy,抛物线y=-x2+bx+c过点A(4,0)、B(1,3). (1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标; (2)记该抛物线的对称轴为直线l,设抛物线上的点P(m,n)在第四象限,点P关于直线l的对称点为E,点E关于y轴的对称点为F,若四边形OAPF的面积为20,求m、n的值. |