1. 难度:中等 | |
正方形ABCD的边长为2,E是射线CD上的动点(不与点D重合),直线AE交直线BC于点G,∠BAE的平分线交射线BC于点O. (1)如图,当CE=时,求线段BG的长; (2)当点O在线段BC上时,设,BO=y,求y关于x的函数解析式; (3)当CE=2ED时,求线段BO的长. |
2. 难度:中等 | |
如图,在平面直角坐标系中,点O为坐标原点,以点A(0,-3)为圆心,5为半径作圆A,交x轴于B,C两点,交y轴于点D,E两点. (1)求点B,C,D的坐标; (2)如果一个二次函数图象经过B,C,D三点,求这个二次函数解析式; (3)P为x轴正半轴上的一点,过点P作与圆A相离并且与x轴垂直的直线,交上述二次函数图象于点F,当△CPF中一个内角的正切之为时,求点P的坐标. |
3. 难度:中等 | |
如图,已知直线l1的解析式为y=3x+6,直线l1与x轴,y轴分别相交于A,B两点,直线l2经过B,C两点,点C的坐标为(8,0),又已知点P在x轴上从点A向点C移动,点Q在直线l2从点C向点B移动.点P,Q同时出发,且移动的速度都为每秒1个单位长度,设移动时间为t秒(1<t<10). (1)求直线l2的解析式; (2)设△PCQ的面积为S,请求出S关于t的函数关系式; (3)试探究:当t为何值时,△PCQ为等腰三角形? |
4. 难度:中等 | |
如图,抛物线y=x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(-1,0). (1)求抛物线的解析式及顶点D的坐标; (2)判断△ABC的形状,证明你的结论; (3)点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,求m的值. [注:抛物线y=ax2+bx+c的顶点坐标为(-,).]. |
5. 难度:中等 | |
一条抛物线y=x2+mx+n经过点(0,3)与(4,3). (1)求这条抛物线的解析式,并写出它的顶点坐标; (2)现有一半径为1,圆心P在抛物线上运动的动圆,当⊙P与坐标轴相切时,求圆心P的坐标; (3)⊙P能与两坐标轴都相切吗?如果不能,试通过上下平移抛物线y=x2+mx+n,使⊙P与两坐标轴都相切.(要说明平移方法) |
6. 难度:中等 | |
如图:已知在等腰直角三角形ABC中,∠C=90°,AC=BC=2,将一个含30°的直角三角形DEF的最小内角所在的顶点D与直角三角形ABC的顶点C重合,当△DEF绕着点C旋转时,较长的直角边和斜边始终与线段BA交于G,H两点(G,H可以与B,A重合) (1)如图(1),当∠BCF等于多少度时,△BCG≌△ACH?请给予证明; (2)如图(2),设GH=x,阴影部分(两三角形重叠部分)面积为y,写出y与x的函数关系式;当x为何值时,y最大,并求出最大值.(结果保留根号) |
7. 难度:中等 | |
已知:如图①,在Rt△ACB中,∠C=90°,AC=4 cm,BC=3 cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),解答下列问题: (1)当t为何值时,PQ∥BC; (2)设△AQP的面积为y(cm2),求y与t之间的函数关系式; (3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由; (4)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQP′C,那么是否存在某一时刻t,使四边形PQP′C为菱形?若存在,求出此时菱形的边长;若不存在,说明理由. |
8. 难度:中等 | |
如图,抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当x=O和x=4时,y的值相等.直线y=4x-16与这条抛物线相交于两点,其中一点的横坐标是3,另一点是这条抛物线的顶点M. (1)求这条抛物线的解析式; (2)P为线段OM上一点,过点P作PQ⊥x轴于点Q.若点P在线段OM上运动(点P不与点O重合,但可以与点M重合),设OQ的长为t,四边形PQCO的面积为S,求S与t之间的函数关系式及自变量t的取值范围; (3)随着点P的运动,四边形PQCO的面积S有最大值吗?如果S有最大值,请求出S的最大值,并指出点Q的具体位置和四边形PQCO的特殊形状;如果S没有最大值,请简要说明理由; (4)随着点P的运动,是否存在t的某个值,能满足PO=OC?如果存在,请求出t的值. |
9. 难度:中等 | |
如图:抛物线经过A(-3,0)、B(0,4)、C(4,0)三点. (1)求抛物线的解析式. (2)已知AD=AB(D在线段AC上),有一动点P从点A沿线段AC以每秒1个单位长度的速度移动;同时另一个动点Q以某一速度从点B沿线段BC移动,经过t秒的移动,线段PQ被BD垂直平分,求t的值; (3)在(2)的情况下,抛物线的对称轴上是否存在一点M,使MQ+MC有最小值?若存在,请求出点M的坐标;若不存在,请说明理由.(注:抛物线y=ax2+bx+c的对称轴为x=-) |
10. 难度:中等 | |
如图,抛物线c1:y=x2-2x-3与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.点P为线段BC上一点,过点P作直线l⊥x轴于点F,交抛物线c1点E. (1)求A、B、C三点的坐标; (2)当点P在线段BC上运动时,求线段PE长的最大值; (3)当PE为最大值时,把抛物线c1向右平移得到抛物线c2,抛物线c2与线段BE交于点M,若直线CM把△BCE的面积分为1:2两部分,则抛物线c1应向右平移几个单位长度可得到抛物线c2? |
11. 难度:中等 | |
如图1,在Rt△ABC中,∠C=90°,BC=8厘米,点D在AC上,CD=3厘米.点P、Q分别由A、C两点同时出发,点P沿AC方向向点C匀速移动,速度为每秒k厘米,行完AC全程用时8秒;点Q沿CB方向向点B匀速移动,速度为每秒1厘米.设运动的时间为x秒(0<x<8),△DCQ的面积为y1平方厘米,△PCQ的面积为y2平方厘米. (1)求y1与x的函数关系,并在图2中画出y1的图象; (2)如图2,y2的图象是抛物线的一部分,其顶点坐标是(4,12),求点P的速度及AC的长; (3)在图2中,点G是x轴正半轴上一点0<OG<6,过G作EF垂直于x轴,分别交y1、y2的图象于点E、F. ①说出线段EF的长在图1中所表示的实际意义; ②当0<x<6时,求线段EF长的最大值. |
12. 难度:中等 | |
如图,平行四边形ABCD中,AB=4,点D的坐标是(0,8),以点C为顶点的抛物线y=ax2+bx+c经过x轴上的点A,B. (1)求点A,B,C的坐标; (2)若抛物线向上平移后恰好经过点D,求平移后抛物线的解析式. |
13. 难度:中等 | |
如图,平面直角坐标系中有一矩形纸片OABC,O为原点,点A,C分别在x轴,y轴上,点B坐标为(m,)(其中m>0),在BC边上选取适当的点E和点F,将△OCE沿OE翻折,得到△OGE;再将△ABF沿AF翻折,恰好使点B与点G重合,得到△AGF,且∠OGA=90度. (1)求m的值; (2)求过点O,G,A的抛物线的解析式和对称轴; (3)在抛物线的对称轴上是否存在点P,使得△OPG是等腰三角形?若不存在,请说明理由;若存在,直接答出所有满足条件的点P的坐标(不要求写出求解过程). |
14. 难度:中等 | |
如图,已知平面直角坐标系xoy中,有一矩形纸片OABC,O为坐标原点,AB∥x轴,B(3,),现将纸片按如图折叠,AD,DE为折痕,∠OAD=30度.折叠后,点O落在点O1,点C落在线段AB点C1处,并且DO1与DC1在同一直线上. (1)求折痕AD所在直线的解析式; (2)求经过三点O,C1,C的抛物线的解析式; (3)若⊙P的半径为R,圆心P在(2)的抛物线上运动,⊙P与两坐标轴都相切时,求⊙P半径R的值. |
15. 难度:中等 | |
如图,抛物线y1=-ax2-ax+1经过点P(-,),且与抛物线y2=ax2-ax-1相交于A,B两点. (1)求a值; (2)设y1=-ax2-ax+1与x轴分别交于M,N两点(点M在点N的左边),y2=ax2-ax-1与x轴分别交于E,F两点(点E在点F的左边),观察M,N,E,F四点的坐标,写出一条正确的结论,并通过计算说明; (3)设A,B两点的横坐标分别记为xA,xB,若在x轴上有一动点Q(x,0),且xA≤x≤xB,过Q作一条垂直于x轴的直线,与两条抛物线分别交于C,D两点,试问当x为何值时,线段CD有最大值,其最大值为多少? |
16. 难度:中等 | |
如图,矩形ABCD中,AB=8,BC=10,点P在矩形的边DC上由D向C运动.沿直线AP翻折△ADP,形成如下四种情形.设DP=x,△ADP和矩形重叠部分(阴影)的面积为y. (1)如图丁,当点P运动到与C重合时,求重叠部分的面积y; (2)如图乙,当点P运动到何处时,翻折△ADP后,点D恰好落在BC边上这时重叠部分的面积y等于多少? (3)阅读材料:已知锐角α≠45°,tan2α是角2α的正切值,它可以用角α的正切值tanα来表示,即(α≠45°).根据上述阅读材料,求出用x表示y的解析式,并指出x的取值范围. (提示:在图丙中可设∠DAP=a) |
17. 难度:中等 | |
如图所示,E是正方形ABCD的边AB上的动点,EF⊥DE交BC于点F. (1)求证:△ADE∽△BEF; (2)设正方形的边长为4,AE=x,BF=y.当x取什么值时,y有最大值?并求出这个最大值. |
18. 难度:中等 | |
如图所示,在梯形ABCD中,已知AB∥CD,AD⊥DB,AD=DC=CB,AB=4.以AB所在直线为x轴,过D且垂直于AB的直线为y轴建立平面直角坐标系. (1)求∠DAB的度数及A、D、C三点的坐标; (2)求过A、D、C三点的抛物线的解析式及其对称轴L; (3)若P是抛物线的对称轴L上的点,那么使△PDB为等腰三角形的点P有几个?(不必求点P的坐标,只需说明理由) |
19. 难度:中等 | |
如图,在平面直角坐标系内,以y轴为对称轴的抛物线经过直y=-x+2与y轴的交点A和点M(-,0). (1)求这条抛物线所对应的二次函数的关系式; (2)将(1)中所求抛物线沿x轴向右平移.①在题目所给的图中画出沿x轴平移后经过原点的抛物线大致图象;②设沿x轴向右平移后经过原点的抛物线对称轴与直线AB相交于C点.判断以O为圆心,OC为半径的圆与直线AB的位置关系,并说明理由; (3)P点是沿x轴向右平移后经过原点的抛物线对称轴上的点,求P点的坐标,使得以O,A,C,P四点为顶点的四边形是平行四边形. |
20. 难度:中等 | |
如图,在平面直角坐标系中,抛物线y=-x2+bx+c经过A(0,-4)、B(x1,0)、C(x2,0)三点,且x2-x1=5. (1)求b、c的值; (2)在抛物线上求一点D,使得四边形BDCE是以BC为对角线的菱形; (3)在抛物线上是否存在一点P,使得四边形BPOH是以OB为对角线的菱形?若存在,求出点P的坐标,并判断这个菱形是否为正方形;若不存在,请说明理由. |
21. 难度:中等 | |
已知抛物线M:y=-x2+2mx+n(m,n为常数,且m>0,n>0)的顶点为A,与y轴交于点C;抛物线N与抛物线M关于y轴对称,其顶点为B,连接AC,BC,AB. 问抛物线M上是否存在点P,使得四边形ABCP为菱形?如果存在,请求出m的值;如果不存在,请说明理由. 说明: (1)如果你反复探索,没有解决问题,请写出探索过程(要求至少写3步); (2)在你完成(1)之后,可以从①、②中选取一个条件,完成解答(选取①得7分;选取②得10分). ①n=1;②n=2. |
22. 难度:中等 | |
如图1,P1、P2、P3、…、Pn分别是抛物线y=x2与直线y=x、y=2x、y=3x、…、y=kx的交点,连接P1P2、P2P3,…,Pk-1Pk. (1)求△OP1P2的面积,并直接写出△OP2P3的面积; (2)如图2,猜想△OPk-1Pk的面积,并说明理由; (3)若将抛物线y=x2改为抛物线y=ax2,其它条件不变,猜想△OPk-1Pk的面积(直接写出答案). |
23. 难度:中等 | |
如图,已知二次函数y=ax2+bx+c的图象经过三点A(-1,0),B(3,0),C(0,3),它的顶点为M,又正比例函数y=kx的图象于二次函数相交于两点D、E,且P是线段DE的中点. (1)求该二次函数的解析式,并求函数顶点M的坐标; (2)已知点E(2,3),且二次函数的函数值大于正比例函数时,试根据函数图象求出符合条件的自变量x的取值范围; (3)0<k<2时,求四边形PCMB的面积s的最小值. 【参考公式:已知两点D(x1,y1),E(x2,y2),则线段DE的中点坐标为】 |
24. 难度:中等 | |
在平面直角坐标系中,△AOB的位置如图所示.已知∠AOB=90°,AO=BO,点A的坐标为(-3,1). (1)求点B的坐标. (2)求过A,O,B三点的抛物线的解析式. (3)设点B关于抛物线的对称轴ℓ的对称点为Bl,连接AB1,求tan∠AB1B的值. |
25. 难度:中等 | |
如图,已知直线y=x+8交x轴于A点,交y轴于B点,过A、0两点的抛物线y=ax2+bx(a<O)的顶点C在直线AB上,以C为圆心,CA的长为半径作⊙C. (1)求抛物线的对称轴、顶点坐标及解析式; (2)将⊙C沿x轴翻折后,得到⊙C′,求证:直线AC是⊙C′的切线; (3)若M点是⊙C的优弧(不与0、A重合)上的一个动点,P是抛物线上的点,且∠POA=∠AM0,求满足条件的P点的坐标. |
26. 难度:中等 | |
如图,等腰梯形ABCD中,AB=4,CD=9,∠C=60°,动点P从点C出发沿CD方向向点D运动,动点Q同时以相同速度从点D出发沿DA方向向终点A运动,其中一个动点到达端点时,另一个动点也随之停止运动. (1)求AD的长; (2)设CP=x,问当x为何值时△PDQ的面积达到最大,并求出最大值; (3)探究:在BC边上是否存在点M使得四边形PDQM是菱形?若存在,请找出点M,并求出BM的长;不存在,请说明理由. |
27. 难度:中等 | |
如图,已知抛物线与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C(0,3). (1)求抛物线的解析式; (2)设抛物线的顶点为D,在其对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由; (3)点M是抛物线上一点,以B,C,D,M为顶点的四边形是直角梯形,试求出点M的坐标. |
28. 难度:中等 | |
如图,在平面直角坐标系中,直线y=-x-与x轴交于点A,与y轴交于点C,抛物线y=ax2-x+c(a≠0)经过A,B,C三点. (1)求过A,B,C三点抛物线的解析式并求出顶点F的坐标; (2)在抛物线上是否存在点P,使△ABP为直角三角形?若存在,直接写出P点坐标;若不存在,请说明理由; (3)试探究在直线AC上是否存在一点M,使得△MBF的周长最小?若存在,求出M点的坐标;若不存在,请说明理由. |
29. 难度:中等 | |
如图,现有两块全等的直角三角形纸板Ⅰ,Ⅱ,它们两直角边的长分别为1和2.将它们分别放置于平面直角坐标系中的△AOB,△COD处,直角边OB,OD在x轴上.一直尺从上方紧靠两纸板放置,让纸板Ⅰ沿直尺边缘平行移动.当纸板Ⅰ移动至△PEF处时,设PE,PF与OC分别交于点M,N,与x轴分别交于点G,H. (1)求直线AC所对应的函数关系式; (2)当点P是线段AC(端点除外)上的动点时,试探究: ①点M到x轴的距离h与线段BH的长是否总相等?请说明理由; ②两块纸板重叠部分(图中的阴影部分)的面积S是否存在最大值?若存在,求出这个最大值及S取最大值时点P的坐标;若不存在,请说明理由. |
30. 难度:中等 | |
如图1,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=4. (1)在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标; (2)如图2,若AE上有一动点P(不与A,E重合)自A点沿AE方向E点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为t秒(0<t<5),过P点作ED的平行线交AD于点M,过点M作AE平行线交DE于点N.求四边形PMNE的面积S与时间t之间的函数关系式;当t取何值时,s有最大值,最大值是多少? (3)在(2)的条件下,当t为何值时,以A,M,E为顶点的三角形为等腰三角形,并求出相应的时刻点M的坐标? |