相关试卷
当前位置:首页 > 初中数学试卷 > 试卷信息
第2章《二次函数》中考题集(46):2.8 二次函数的应用(解析版)
一、解答题
详细信息
1. 难度:中等
已知抛物线y=ax2+b(a>0,b>0),函数y=b|x|
问:(1)如图,当抛物线y=ax2+b与函数y=b|x|相切于AB两点时,a、b满足的关系;
(2)满足(1)题条件,则三角形AOB的面积为多少?
(3)满足条件(2),则三角形AOB的内心与抛物线的最低点间的距离为多少?
(4)若不等式ax2+b>b|x|在实数范围内恒成立,则a、b满足什么关系?

manfen5.com 满分网
详细信息
2. 难度:中等
如图1,连接△ABC的各边中点得到一个新的△A1B1C1,又连接△A1B1C1的各边中点得到△A2B2C2,如此无限继续下去,得到一系列三角形:△ABC,△A1B1C1,△A2B2C2,…
已知A(0,0),B(3,0),C(2,2).
manfen5.com 满分网
(1)求这一系列三角形趋向于一个点M的坐标;
(2)如图2,分别求出经过A,B,C三点的抛物线解析式和经过A1,B1,C1三点的抛物线解析式;
(3)设两抛物线的交点分别为E、F,连接EF、EC1、FC1、EC2、FC2、C1C2,问:C2与△EC1F的关系是什么?
(4)如图3,问:A,A2,C,C2四点可不可能在同一条抛物线上,试说明理由.
详细信息
3. 难度:中等
已知抛物线y=manfen5.com 满分网x2+bx+c经过点(1,-1)和C(0,-1),且与x轴交于A、B两点(A在B左边),直manfen5.com 满分网线x=m(m>0)与x轴交于点D.
(1)求抛物线的解析式;
(2)在第一象限内,直线x上是否存在点P,使得以P、B、D为顶点的三角形与△OBC全等?若存在,求出点P坐标;若不存在,说明理由;
(3)在(2)的情况下,过点P作x轴的平行线交抛物线于点Q,四边形AOPQ能否为平行四边形?若能,求Q点坐标;若不能,说明理由.
详细信息
4. 难度:中等
(人教版)已知:二次函数y=x2-(m+1)x+m的图象交x轴于A(x1,0)、B(x2,0)两点,交y轴正半轴于点C,且x12+x22=10.
(1)求此二次函数的解析式;
(2)是否存在过点D(0,-manfen5.com 满分网)的直线与抛物线交于点M、N,与x轴交于点E,使得点M、N关于点E对称?若存在,求直线MN的解析式;若不存在,请说明理由.
详细信息
5. 难度:中等
在平面直角坐标系中,抛物线交x轴于A,B两点,交y轴于点C,已知抛物线的对称轴为x=1,B(3,0),C(0,-3).
(1)求这个抛物线的解析式;
(2)在x轴上方平行于x轴的一条直线交抛物线于M,N两点,以MN为直径作圆与x轴相切,求此圆的直径;
(3)在抛物线的对称轴上是否存在一点P,使点P到B,C两点间的距离之差最大?若存在,求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网
详细信息
6. 难度:中等
已知抛物线y=ax2+bx+c(a>0)的顶点是C(0,1),直线l:y=-ax+3与这条抛物线交于P、Q两点,与x轴、y轴分别交于点M和N.
(1)设点P到x轴的距离为2,试求直线l的函数关系式;
(2)若线段MP与PN的长度之比为3:1,试求抛物线的函数关系式.
详细信息
7. 难度:中等
如图,在Rt△ABC中,∠BAC=90°,AB=AC=2,点D在BC上运动(不能到达B,C点),过D作∠ADE=45°,DE交AC于E.
(1)求证:△ABD∽△DCE;
(2)设BD=x,AE=y,求y关于x的函数表达式;
(3)当△ADE是等腰三角形时,求AE的长.

manfen5.com 满分网
详细信息
8. 难度:中等
已知二次函数图象的顶点在原点O,对称轴为y轴.一次函数y=kx+1的图象与二次函数的图象交于A,B两点(A在B的左侧),且A点坐标为(-4,4).平行于x轴的直线l过(0,-1)点.
(1)求一次函数与二次函数的解析式;
(2)判断以线段AB为直径的圆与直线l的位置关系,并给出证明;
(3)把二次函数的图象向右平移2个单位,再向下平移t个单位(t>0),二次函数的图象与x轴交于M,N两点,一次函数图象交y轴于F点.当t为何值时,过F,M,N三点的圆的面积最小,最小面积是多少?

manfen5.com 满分网
详细信息
9. 难度:中等
在梯形ABCD中,AB∥CD,AB=8cm,CD=2cm,AD=BC=6cm,M、N为同时从A点出发的两个动点,点M沿A⇒D⇒C⇒B的方向运动,速度为2cm/秒;点N沿A⇒B的方向运动,速度为1cm/秒.当M、N其中一点到达B点时,点M、N运动停止.设点M、N的运动时间为x秒,以点A、M、N为顶点的三角形的面积为ycm2
(1)试求出当0<x<3时,y与x之间的函数关系式;
(2)试求出当4<x<7时,y与x之间的函数关系式;
(3)当3<x<4时,以A、M、N为顶点的三角形与以B、M、N为顶点的三角形是否有可能相似?若相似,试求出x的值;若不相似,试说明理由.

manfen5.com 满分网
详细信息
10. 难度:中等
抛物线y=ax2+bx+c(a≠0)过点A(1,-3),B(3,-3),C(-1,5),顶点为M点.
(1)求该抛物线的解析式;
(2)试判断抛物线上是否存在一点P,使∠POM=90度?若不存在,说明理由;若存在,求出P点的坐标;
(3)试判断抛物线上是否存在一点K,使∠OMK=90°?说明理由.

manfen5.com 满分网
详细信息
11. 难度:中等
已知抛物线y=ax2+bx+c的顶点坐标为(2,4).
(Ⅰ)试用含a的代数式分别表示b,c;
(Ⅱ)若直线y=kx+4(k≠0)与y轴及该抛物线的交点依次为D、E、F,且manfen5.com 满分网,其中O为坐标原点,试用含a的代数式表示k;
(Ⅲ)在(Ⅱ)的条件下,若线段EF的长m满足3manfen5.com 满分网≤m≤3manfen5.com 满分网,试确定a的取值范围.
详细信息
12. 难度:中等
将一矩形纸片OABC放在直角坐标系中,O为原点,C在x轴上,OA=6,OC=10.manfen5.com 满分网
(1)如图(1),在OA上取一点E,将△EOC沿EC折叠,使O点落在AB边上的D点,求E点的坐标;
(2)如图(2),在OA、OC边上选取适当的点E′、F,将△E′OF沿E′F折叠,使O点落在AB边上的D′点,过D′作D′G∥A′O交E′F于T点,交OC′于G点,求证:TG=A′E′.
(3)在(2)的条件下,设T(x,y)①探求:y与x之间的函数关系式.②指出变量x的取值范围.
(4)如图(3),如果将矩形OABC变为平行四边形OA“B“C“,使O C“=10,O C“边上的高等于6,其它条件均不变,探求:这时T(x,y)的坐标y与x之间是否仍然满足(3)中所得的函数关系,若满足,请说明理由;若不满足,写出你认为正确的函数关系式.
详细信息
13. 难度:中等
如图,Rt△AOB是一张放在平面直角坐标系中的直角三角形纸片,点O与原点重合,点A在x轴上,点B在y轴上,OB=manfen5.com 满分网,∠BAO=30度.将Rt△AOB折叠,使BO边落在BA边上,点O与点D重合,折痕为BC.
(1)求直线BC的解析式;
(2)求经过B,C,A三点的抛物线y=ax2+bx+c的解析式;若抛物线的顶点为M,试判断点M是否在直线BC上,并说明理由.

manfen5.com 满分网
详细信息
14. 难度:中等
manfen5.com 满分网如图,抛物线y=-manfen5.com 满分网x2+manfen5.com 满分网x-2与x轴相交于点A、B,与y轴相交于点C.
(1)求证:△AOC∽△COB;
(2)过点C作CD∥x轴交抛物线于点D.若点P在线段AB上以每秒1个单位的速度由A向B运动,同时点Q在线段CD上也以每秒1个单位的速度由D向C运动,则经过几秒后,PQ=AC.
详细信息
15. 难度:中等
已知抛物线C1:y=-x2+2mx+n(m,n为常数,且m≠0,n>0)的顶点为A,与y轴交于点C;抛物线C2与抛物线C1关于y轴对称,其顶点为B,连接AC,BC,AB.
注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为manfen5.com 满分网
(1)请在横线上直接写出抛物线C2的解析式:______
(2)当m=1时,判定△ABC的形状,并说明理由;
(3)抛物线C1上是否存在点P,使得四边形ABCP为菱形?如果存在,请求出m的值;如果不存在,请说明理由.

manfen5.com 满分网
详细信息
16. 难度:中等
如图,在平面直角坐标系中,直线y=-manfen5.com 满分网x+1分别与x轴,y轴交于点A,点B.
(1)以AB为一边在第一象限内作等边△ABC及△ABC的外接圆⊙M(用尺规作图,不要求写作法,但要保留作图痕迹);
(2)若⊙M与x轴的另一个交点为点D,求A,B,C,D四点的坐标;
(3)求经过A,B,D三点的抛物线的解析式,并判断在抛物线上是否存在点P,使△ADP的面积等于△ADC的面积?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.

manfen5.com 满分网
详细信息
17. 难度:中等
如图,抛物线y=ax2-8ax+12a(a<0)与x轴交于A、B两点(点A在点B的左侧),抛物线上另有一点C在第一象限,满足∠ACB为直角,且恰使△OCA∽△OBC.
(1)求线段OC的长;
(2)求该抛物线的函数关系式;
(3)在x轴上是否存在点P,使△BCP为等腰三角形?若存在,求出所有符合条件的P点的坐标;若不存在,请说明理由.

manfen5.com 满分网
详细信息
18. 难度:中等
如图,已知抛物线y=manfen5.com 满分网x2+1,直线y=kx+b经过点B(0,2)
(1)求b的值;
(2)将直线y=kx+b绕着点B旋转到与x轴平行的位置时(如图1),直线与抛物线y=manfen5.com 满分网x2+1相交,其中一个交点为P,求出P的坐标;
(3)将直线y=kx+b继续绕着点B旋转,与抛物线相交,其中一个交点为P'(如图②),过点P'作x轴的垂线P'M,点M为垂足.是否存在这样的点P',使△P'BM为等边三角形?若存在,请求出点P'的坐标;若不存在,请说明理由.
manfen5.com 满分网
详细信息
19. 难度:中等
如图,在△ABC中,AB=AC,E是高AD上的动点,F是点D关于点E的对称点(点F在高AD上,且不与A,D重合).过点F作BC的平行线与AB交于G,与AC交于H,连接GE并延长交BC于点I,连接HE并延长交BC于点J,连接GJ,HI.
(1)求证:四边形GHIJ是矩形;
(2)若BC=10,AD=6,设DE=x,S矩形GHIJ=y.
①求y与x的函数关系式,并写出自变量x的取值范围;
②点E在何处时,矩形GHIJ的面积与△AGH的面积相等?

manfen5.com 满分网
详细信息
20. 难度:中等
如图,在直角坐标系中,O为原点.点A在x轴的正半轴上,点B在y轴的正半轴上,tan∠OAB=2.二次函数y=x2+mx+2的图象经过点A,B,顶点为D.
(1)求这个二次函数的解析式;
(2)将△OAB绕点A顺时针旋转90°后,点B落到点C的位置.将上述二次函数图象沿y轴向上或向下平移后经过点C.请直接写出点C的坐标和平移后所得图象的函数解析式;
(3)设(2)中平移后所得二次函数图象与y轴的交点为B1,顶点为D1.点P在平移后的二次函数manfen5.com 满分网图象上,且满足△PBB1的面积是△PDD1面积的2倍,求点P的坐标.
详细信息
21. 难度:中等
如图,已知抛物线C1与坐标轴的交点依次是A(-4,0),B(-2,0),E(0,8).
(1)求抛物线C1关于原点对称的抛物线C2的解析式;
(2)设抛物线C1的顶点为M,抛物线C2与x轴分别交于C,D两点(点C在点D的左侧),顶点为N,四边形MDNA的面积为S.若点A,点D同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点M,点N同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A与点D重合为止.求出四边形MDNA的面积S与运动时间t之间的关系式,并写出自变量t的取值范围;
(3)当t为何值时,四边形MDNA的面积S有最大值,并求出此最大值;
(4)在运动过程中,四边形MDNA能否形成矩形?若能,求出此时t的值;若不能,请说明理由.

manfen5.com 满分网
详细信息
22. 难度:中等
如图所示,在平面直角坐标系中有点A(-1,0),点B(4,0),以AB为直径的半圆交y轴正半轴于点C.
(1)求点C的坐标;
(2)求过A,B,C三点的抛物线的解析式;
(3)在(2)的条件下,若在抛物线上有一点D,使四边形BOCD为直角梯形,求直线BD的解析式;
(4)设点M是抛物线上任意一点,过点M作MN⊥y轴,交y轴于点N.若在线段AB上有且只有一点P,使∠MPN为直角,求点M的坐标.

manfen5.com 满分网
详细信息
23. 难度:中等
如图,已知抛物线与x轴交于A(m,0)、B(n,0)两点,与y轴交于点C(0,3),点P是抛物线的顶点,若m-n=-2,m•n=3.
(1)求抛物线的表达式及P点的坐标;
(2)求△ACP的面积S△ACP

manfen5.com 满分网
详细信息
24. 难度:中等
一条隧道的截面如图所示,它的上部是一个以AD为直径的半圆O,下部是一个矩形ABCD.
(1)当AD=4米时,求隧道截面上部半圆O的面积;
(2)已知矩形ABCD相邻两边之和为8米,半圆O的半径为r米.
①求隧道截面的面积S(米2)关于半径r(米)的函数关系式(不要求写出r的取值范围);
②若2米≤CD≤3米,利用函数图象求隧道截面的面积S的最大值(π取3.14,结果精确到0.1米).

manfen5.com 满分网
详细信息
25. 难度:中等
在等腰梯形ABCD中,已知AB=6,BC=manfen5.com 满分网,∠A=45°,以AB所在直线为x轴,A为坐标原点建立直角坐标系,将等腰梯形ABCD饶A点按逆时针方向旋转90°得到等腰梯形OEFG(O﹑E﹑F﹑G分别是A﹑B﹑C﹑D旋转后的对应点)(图1)
(1)写出C﹑F两点的坐标;
(2)等腰梯形ABCD沿x轴的负半轴平行移动,设移动后的OA=x(图2),等腰梯形ABCD与等腰梯形OEFG重叠部分的面积为y,当点D移动到等腰梯形OEFG的内部时,求y与x之间的关系式;
(3)线段DC上是否存在点P,使EFP为等腰三角形?若存在,求出点P坐标;若不存在,请说明理由.manfen5.com 满分网
详细信息
26. 难度:中等
如图,已知抛物线l1:y=x2-4的图象与x有交于A、C两点,
(1)若抛物线l2与l1关于x轴对称,求l2的解析式;
(2)若点B是抛物线l1上的一动点(B不与A、C重合),以AC为对角线,A、B、C三点为顶点的平行四边形的第四个顶点定为D,求证:点D在l2上;
(3)探索:当点B分别位于l1在x轴上、下两部分的图象上时,平行四边形ABCD的面积是否存在最大值和最小值?若存在,判断它是何种特殊平行四边形,并求出它的面积;若不存在,请说明理由.

manfen5.com 满分网
详细信息
27. 难度:中等
如图①,有两个形状完全相同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜边上的中点.
如图②,若整个△EFG从图①的位置出发,以1cm/s的速度沿射线AB方向平移,在△EFG平移的同时,点P从△EFG的顶点G出发,以1cm/s的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,△EFG也随之停止平移.设运动时间为x(s),FG的延长线交AC于H,四边形OAHP的面积为y(cm2)(不考虑点P与G、F重合的情况).
manfen5.com 满分网
(1)当x为何值时,OP∥AC;
(2)求y与x之间的函数关系式,并确定自变量x的取值范围;
(3)是否存在某一时刻,使四边形OAHP面积与△ABC面积的比为13:24?若存在,求出x的值;若不存在,说明理由.(参考数据:1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)
详细信息
28. 难度:中等
如图,在平面直角坐标系中,矩形OABC的顶点O为原点,E为AB上一点,把△CBE沿CE折叠,使点B恰好落在OA边上的点D处,点A,D的坐标分别为(5,0)和(3,0).
(1)求点C的坐标;
(2)求DE所在直线的解析式;
(3)设过点C的抛物线y=2x2+manfen5.com 满分网bx+c(b<0)与直线BC的另一个交点为M,问在该抛物线上是否存在点G,使得△CMG为等边三角形?若存在,求出点G的坐标;若不存在,请说明理由.

manfen5.com 满分网
详细信息
29. 难度:中等
已知抛物线y=ax2+bx+c与y轴的交点为C,顶点为M,直线CM的解析式y=-x+2并且线段CM的长为manfen5.com 满分网
(1)求抛物线的解析式;
(2)设抛物线与x轴有两个交点A(x1,0)、B(x2,0),且点A在B的左侧,求线段AB的长;
(3)若以AB为直径作⊙N,请你判断直线CM与⊙N的位置关系,并说明理由.

manfen5.com 满分网
Copyright @ 2008-2013 满分5 学习网 ManFen5.COM. All Rights Reserved.