相关试卷
当前位置:首页 > 初中数学试卷 > 试卷信息
第2章《二次函数》中考题集(49):2.8 二次函数的应用(解析版)
一、解答题
详细信息
1. 难度:中等
如图,平面直角坐标系中,四边形OABC为矩形,点A,B的坐标分别为(4,0),(4,3),动点M,N分别从O,B同时出发.以每秒1个单位的速度运动.其中,点M沿OA向终点A运动,点N沿BC向终点C运动.过点M作MP⊥OA,交AC于P,连接NP,已知动点运动了x秒.
(1)P点的坐标为多少(用含x的代数式表示);
(2)试求△NPC面积S的表达式,并求出面积S的最大值及相应的x值;
(3)当x为何值时,△NPC是一个等腰三角形?简要说明理由.

manfen5.com 满分网
详细信息
2. 难度:中等
如图,抛物线E:y=x2+4x+3交x轴于A、B两点,交y轴于M点,抛物线E关于y轴对称的抛物线F交x轴于C、D两点.
(1)求F的解析式;
(2)在x轴上方的抛物线F或E上是否存在一点N,使以A、C、N、M为顶点的四边形是平行四边形?若存在,求点N的坐标;若不存在,请说明理由;
(3)若将抛物线E的解析式改为y=ax2+bx+c,试探索问题(2).

manfen5.com 满分网
详细信息
3. 难度:中等
如图,点P(-m,m2)抛物线:y=x2上一点,将抛物线E沿x轴正方向平移2m个单位得到抛物线F,抛物线F的顶点为B,抛物线F交抛物线E于点A,点C是x轴上点B左侧一动点,点D是射线AB上一点,且∠ACD=∠POM.问△ACD能否为等腰三角形?若能,求点C的坐标;若不能,请说明理由.
manfen5.com 满分网
说明:
(1)如果你反复探索,没有解决问题,请写出探索过程(要求至少写3步);
(2)在你完成(1)之后,可以从①、②中选取一个条件,完成解答(选取①得7分;选取②得10分).①m=1;②m=2.
详细信息
4. 难度:中等
如图,抛物线y=-manfen5.com 满分网x2+bx+2交x轴于A、B两点(点B在点A的左侧),交y轴于点C,其对称轴为x=manfen5.com 满分网,O为坐标原点.
(1)求A、B、C三点的坐标;
(2)求证:∠ACB是直角;
(3)抛物线上是否存在点P,使得∠APB为锐角?若存在,求出点P的横坐标的取值范围;若不存在,请说明理由.

manfen5.com 满分网
详细信息
5. 难度:中等
如图,在平面直角坐标系中,已知点B(-2manfen5.com 满分网,0),A(m,0)(-manfen5.com 满分网<m<0),以AB为边在x轴下方作正方形ABCD,点E是线段OD与正方形ABCD的外接圆除点D以外的另一个交点,连接BE与AD相交于点F.
(1)求证:BF=DO;
(2)设直线l是△BDO的边BO的垂直平分线,且与BE相交于点G.若G是△BDO的外心,试求经过B、F、O三点的抛物线的解析表达式;
(3)在(2)的条件下,在抛物线上是否存在点P,使该点关于直线BE的对称点在x轴上?若存在,求出所有这样的点的坐标;若不存在,请说明理由.

manfen5.com 满分网
详细信息
6. 难度:中等
在平面直角坐标系中,已知二次函数y=a(x-1)2+k的图象与x轴相交于点A,B,顶点为C,点D在这个二次函数图象的对称轴上.若四边形ACBD是一个边长为2且有一个内角为60°的菱形.求此二次函数的表达式.

manfen5.com 满分网
详细信息
7. 难度:中等
如图,在直角坐标系中,已知点A(manfen5.com 满分网,0),B(-manfen5.com 满分网,0),以点A为圆心,AB为半径的圆与x轴相交于点B,C,与y轴相交于点D,E.
(1)若抛物线y=manfen5.com 满分网x2+bx+c经过C,D两点,求抛物线的解析式,并判断点B是否在该抛物线上;
(2)在(1)中的抛物线的对称轴上求一点P,使得△PBD的周长最小;
(3)设Q为(1)中的抛物线的对称轴上的一点,在抛物线上是否存在这样的点M,使得四边形BCQM是平行四边形?若存在,求出点M的坐标;若不存在,说明理由.

manfen5.com 满分网
详细信息
8. 难度:中等
如图1,已知直线y=-manfen5.com 满分网x与抛物线y=-manfen5.com 满分网x2+6交于A,B两点.
(1)求A,B两点的坐标;
(2)求线段AB的垂直平分线的解析式;
(3)如图2,取与线段AB等长的一根橡皮筋,端点分别固定在A,B两处.用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P将与A,B构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时P点的坐标;如果不存在,请简要说明理由.
manfen5.com 满分网
详细信息
9. 难度:中等
如图1,正方形ABCD的顶点A,B的坐标分别为(0,10),(8,4),顶点C,D在第一象限.点P从点A出发,沿正方形按逆时针方向运动,同时,点Q从点E(4,0)出发,沿x轴正方向以相同速度运动.当点P到达点C时,P,Q两点同时停止运动.设运动时间为t(s).
(1)求正方形ABCD的边长;
(2)当点P在AB边上运动时,△OPQ的面积S(平方单位)与时间t(s)之间的函数图象为抛物线的一部分(如图2所示),求P,Q两点的运动速度;
(3)求(2)中面积S(平方单位)与时间t(s)的函数解析式及面积S取最大值时点P的坐标;
(4)若点P,Q保持(2)中的速度不变,则点P沿着AB边运动时,∠OPQ的大小随着时间t的增大而增大;沿着BC边运动时,∠OPQ的大小随着时间t的增大而减小.当点P沿着这两边运动时,能使∠OPQ=90°吗?若能,直接写出这样的点P的个数;若不能,直接写不能.
manfen5.com 满分网
详细信息
10. 难度:中等
如图,二次函数y=x2+bx+c的图象经过点M(1,-2)、N(-1,6).
(1)求二次函数y=x2+bx+c的关系式;
(2)把Rt△ABC放在坐标系内,其中∠CAB=90°,点A、B的坐标分别为(1,0),(4,0),BC=5.将△ABC沿x轴向右平移,当点C落在抛物线上时,求△ABC平移的距离.

manfen5.com 满分网
详细信息
11. 难度:中等
如图,P为抛物线y=manfen5.com 满分网x2-manfen5.com 满分网x+manfen5.com 满分网上对称轴右侧的一点,且点P在x轴上方,过点P作PA垂直x轴于点A,PB垂直y轴于点B,得到矩形PAOB.若AP=1,求矩形PAOB的面积.

manfen5.com 满分网
详细信息
12. 难度:中等
已知:抛物线M:y=x2+(m-1)x+(m-2)与x轴相交于A(x1,0),B(x2,0)两点,且x1<x2
(Ⅰ)若x1x2<0,且m为正整数,求抛物线M的解析式;
(Ⅱ)若x1<1,x2>1,求m的取值范围;
(Ⅲ)试判断是否存在m,使经过点A和点B的圆与y轴相切于点C(0,2)?若存在,求出M:y=x2+(m-1)x+(m-2)的值;若不存在,试说明理由;
(Ⅳ)若直线l:y=kx+b过点F(0,7),与(Ⅰ)中的抛物线M相交于P,Q两点,且使manfen5.com 满分网,求直线l的解析式.
详细信息
13. 难度:中等
如图,△ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm,要把它加工成长方形零件PQMN,使长方形PQMN的边QM在BC上,其余两个顶点P,N分别在AB,AC上.
(Ⅰ)求这个长方形零件PQMN面积S的最大值;
(Ⅱ)在这个长方形零件PQMN面积最大时,能否将余下的材料△APN,△BPQ,△NMC剪下再拼成(不计接缝用料及损耗)与长方形PQMN大小一样的长方形?若能,试给出一种拼法;若不能,试说明理由.

manfen5.com 满分网
详细信息
14. 难度:中等
已知:抛物线y=-x2+mx+2m2(m>0)与x轴交于A、B两点,点A在点B的左边,C是抛物线上一个动点(点C与点A、B不重合),D是OC的中点,连接BD并延长,交AC于点E.
(1)用含m的代数式表示点A、B的坐标;
(2)求manfen5.com 满分网的值;
(3)当C、A两点到y轴的距离相等,且S△CED=manfen5.com 满分网时,求抛物线和直线BE的解析式.

manfen5.com 满分网
详细信息
15. 难度:中等
已知抛物线y=ax2+bx+c与y轴交于点A(0,3),与x轴分别交于B(1,0)、C(5,0)两点.
(1)求此抛物线的解析式;
(2)若点D为线段OA的一个三等分点,求直线DC的解析式;
(3)若一个动点P自OA的中点M出发,先到达x轴上的某点(设为点E),再到达抛物线的对称轴上某点(设为点F),最后运动到点A′求使点P运动的总路径最短的点E、点F的坐标,并求出这个最短总路径的长.
详细信息
16. 难度:中等
如图,在平面直角坐标系中,以点0′(-2,-3)为圆心,5为半径的圆交x轴于A、B两点,过点B作⊙O′的切线,交y轴于点C,过点0′作x轴的垂线MN,垂足为D,一条抛物线(对称轴与y轴平行)经过A、B两点,且顶点在直线BC上.
(1)求直线BC的解析式;
(2)求抛物线的解析式;
(3)设抛物线与y轴交于点P,在抛物线上是否存在一点Q,使四边形DBPQ为平行四边形?若存在,请求出点Q的坐标;若不存在,请说明理由.

manfen5.com 满分网
详细信息
17. 难度:中等
已知:⊙P是边长为6的等边△ABC的外接圆,以过点A的直径所在直线为x轴,以BC所在直线为y轴建立平面直角坐标系,x轴与⊙P交于点D.
(1)求A,B,D三点坐标.
(2)求过A,B,D三点的抛物线的解析式.
(3)⊙P的切线交x轴正半轴于点M,交y轴正半轴于点N,切点为点E,且∠NMO=30°,试判断直线MN是否过抛物线的顶点?并说明理由.

manfen5.com 满分网
详细信息
18. 难度:中等
如图,在平面直角坐标系xOy中,已知矩形OACB的边OA,OB分别在x轴上和y轴上,线段OA,OB的长分别是一元二次方程x2-18x+72=0的两个根,且OA>OB;点P从点O开始沿OA边匀速移动,点M从点B开始沿BO边匀速移动.如果点P,点M同时出发,它们移动的速度相同,设OP=x(0≤x≤6),设△POM的面积为y.
(1)求y与x的函数关系式;
(2)连接矩形的对角线AB,当x为何值时,以P,O,M为顶点的三角形与△AOB相似;
(3)当△POM的面积最大时,将△POM沿PM所在直线翻折后得到△PDM,试判断D点是否在矩形的对角线AB上,请说明理由.

manfen5.com 满分网
详细信息
19. 难度:中等
如图,已知O为坐标原点,∠AOB=30°,∠ABO=90°,且点A的坐标为(2,0).
(1)求点B的坐标;
(2)若二次函数y=ax2+bx+c的图象经过A、B、O三点,求此二次函数的解析式;
(3)在(2)中的二次函数图象的OB段(不包括点O、B)上,是否存在一点C,使得四边形ABCO的面积最大?若存在,求出这个最大值及此时点C的坐标;若不存在,请说明理由.

manfen5.com 满分网
详细信息
20. 难度:中等
已知抛物线y=-x2+2(k-1)x+k+2与x轴交于A、B两点,且点A在x轴的负半轴上,点B在x轴的正半轴上.
(1)求实数k的取值范围;
(2)设OA、OB的长分别为a、b,且a:b=1:5,求抛物线的解析式;
(3)在(2)的条件下,以AB为直径的⊙D与y轴的正半轴交于P点,过P点作⊙D的切线交x轴于E点,求点E的坐标.
详细信息
21. 难度:中等
如图所示,在平面直角坐标中,抛物线的顶点P到x轴的距离是4,抛物线与x轴相交于O、M两点,OM=4;矩形ABCD的边BC在线段的OM上,点A、D在抛物线上.
(1)请写出P、M两点坐标,并求出这条抛物线的解析式;
(2)设矩形ABCD的周长为l,求l的最大值;
(3)连接OP、PM,则△PMO为等腰三角形,请判断在抛物线上是否存在点Q(除点M外),使得△OPQ也是等腰三角形,简要说明你的理由.

manfen5.com 满分网
详细信息
22. 难度:中等
已知二次函数的图象经过(0,0),(1,-1),(-2,14)三点.
(1)求这个二次函数的解析式;
(2)设这个二次函数的图象与直线y=x+t(t≤1)相交于(x1,y1),(x2,y2)两点(x1≠x2).
①求t的取值范围;
②设m=y12+y22,求m与t之间的函数关系式及m的取值范围.
详细信息
23. 难度:中等
如图,已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于A、B两点(点A在点B左侧),与y轴交于点C.
(1)求抛物线的解析式及点A、B、C的坐标;
(2)若直线y=kx+t经过C、M两点,且与x轴交于点D,试证明四边形CDAN是平行四边形;
(3)点P在抛物线的对称轴x=1上运动,请探索:在x轴上方是否存在这样的P点,使以P为圆心的圆经过A、B两点,并且与直线CD相切?若存在,请求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网
详细信息
24. 难度:中等
manfen5.com 满分网已知:如图,在坐标平面内,A(0,0),B(12,0),C(12,6),D(0,6),点Q沿DA边从点D开始向点A以1单位/秒的速度移动.点P沿AB边从点A开始向B以2单位/秒的速度移动,假设P、Q同时出发,t表示移动的时间(0≤t≤6).
(1)写出△PQA的面积S与t的函数关系式;
(2)四边形APCQ的面积与t有关吗?请说明理由;(3)当t为何值时,△PQC面积最小,并求此时△PQC的面积;
(4)△APQ能否成轴对称图形?若能,请求出相应的t值,并写出其对称轴的函数关系式;若不能,请说明理由.
详细信息
25. 难度:中等
已知抛物线y=(1-a)x2+8x+b的图象的一部分如图所示,抛物的顶点在第一象限,且经过点A(0,-7)和点B.
(1)求a的取值范围;
(2)若OA=2OB,求抛物线的解析式.

manfen5.com 满分网
详细信息
26. 难度:中等
已知,如图,在直角坐标系中O是坐标原点,四边形AOCB是矩形,0C=6,OA=2,P是边AB上的任意一点.当点P在边AB上移动时,是否存在这样的点P使得OP⊥PC成立?若存在,请求出点P的坐标,画出满足条件的P点,并求出经过D、P、C三点的抛物线的对称轴;若不存在这样的P点,请说明理由.

manfen5.com 满分网
详细信息
27. 难度:中等
如图,抛物线y=-manfen5.com 满分网x2+manfen5.com 满分网x+6,与x轴交于A、B两点,与y轴相交于C点.
(1)求△ABC的面积;
(2)已知E点(0,-3),在第一象限的抛物线上取点D,连接DE,使DE被x轴平分,试判定四边形ACDE的形状,并证明你的结论.

manfen5.com 满分网
详细信息
28. 难度:中等
已知抛物线y=x2+bx-a2
(1)请你选定a、b适当的值,然后写出这条抛物线与坐标轴的三个交点,并画出过三个交点的圆;
(2)试讨论此抛物线与坐标轴交点分别是1个,2个,3个时,a、b的取值范围,并且求出交点坐标.
详细信息
29. 难度:中等
已知:以原点O为圆心、5为半径的半圆与y轴交于A、G两点,AB与半圆相切于点A,点B的坐标为(3,yB)(如图1);过半圆上的点C(xC,yC)作y轴的垂线,垂足为D;Rt△DOC的面积等于manfen5.com 满分网xC2
(1)求点C的坐标;
(2)①命题“如图2,以y轴为对称轴的等腰梯形MNPQ与M1N1P1Q1的上底和下底都分别在同一条直线上,NP∥MQ,PQ∥P1Q1,且NP>MQ.设抛物线y=ax2+h过点P、Q,抛物线y=a1x2+h1过点P1、Q1,则h>h1”是真命题.请你以Q(3,5)、P(4,3)和Q1(p,5)、P1(p+1,3)为例进行验证;
②当图1中的线段BC在第一象限时,作线段BC关于y轴对称的线段FE,连接BF、CE,点T是线段BF上的动点(如图3);设K是过T、B、C三点的抛物线y=ax2+bx+c的顶点,求K的纵坐标yK的取值范围.
manfen5.com 满分网
详细信息
30. 难度:中等
如图,已知抛物线的顶点为M(2,-4),且过点A(-1,5),连接AM交x轴于点B.
(1)求这条抛物线的解析式;
(2)求点B的坐标;
(3)设点P(x,y)是抛物线在x轴下方、顶点左方一段上的动点,连接PO,以P为顶点、PO为腰的等腰三角形的另一顶点Q在x轴的垂线交直线AM于点R,连接PR,设△PQR的面积为S,求S与x之间的函数关系式;
(4)在上述动点P(x,y)中,是否存在使S△PQR=2的点?若存在,求点P的坐标;若不存在,说明理由.

manfen5.com 满分网
Copyright @ 2008-2013 满分5 学习网 ManFen5.COM. All Rights Reserved.