1. 难度:中等 | |
如图,正方形ABCD的边长为4cm,点P是BC边上不与点B、C重合的任意一点,连接AP,过点P作PQ⊥AP交DC于点Q,设BP的长为xcm,CQ的长为ycm. (1)点P在BC上运动的过程中y的最大值为______cm; (2)当y=cm时,求x的值为______ |
2. 难度:中等 | |
为了参加市科技节展览,同学们制造了一个截面为抛物线形的隧道模型,用了三种正方形的钢筋支架.在画设计图时,如果在直角坐标系中,抛物线的函数解析式为y=-x2+c,正方形ABCD的边长和正方形EFGH的边长之比为5:1,求: (1)抛物线解析式中常数c的值; (2)正方形MNPQ的边长. |
3. 难度:中等 | |
如图所示,在平面直角坐标系中,过坐标原点O的圆M分别交x轴、y轴于点A(6,0)、B(0,-8). (1)求直线AB的解析式; (2)若有一条抛物线的对称轴平行于y轴且经过M点,顶点C在圆M上,开口向下,且经过点B,求此抛物线的解析式; (3)设(2)中的抛物线与x轴交于D(x1,y1)、E(x2,y2)两点,且x1<x2,在抛物线上是否存在点P,使△PDE的面积是△ABC面积的?若存在,求出P点的坐标;若不存在,请说明理由. |
4. 难度:中等 | |
已知抛物线y=x2-mx+m-2. (1)求证:此抛物线与x轴有两个不同的交点; (2)若m是整数,抛物线y=x2-mx+m-2与x轴交于整数点,求m的值; (3)在(2)的条件下,设抛物线的顶点为A,抛物线与x轴的两个交点中右侧交点为B.若m为坐标轴上一点,且MA=MB,求点M的坐标. |
5. 难度:中等 | |
已知:直线y=2x+6与x轴和y轴分别交于A、C两点,抛物线y=-x2+bx+c经过点A、C,点B是抛物线与x轴的另一个交点. (1)求抛物线的解析式及B的坐标; (2)设点P是直线AC上一点,且S△ABP:S△BPC=1:3,求点P的坐标; (3)直线y=x+a与(1)中所求的抛物线交于M、N两点,问:是否存在a的值,使得∠MON=90°?若存在,求出a的值;若不存在,请说明理由. |
6. 难度:中等 | |
已知平面直角坐标系xOy中,点A在抛物线y=x2+上,过A作AB⊥x轴于点B,AD⊥y轴于点D,将矩形ABOD沿对角线BD折叠后得A的对应点为A′,重叠部分(阴影)为△BDC. (1)求证:△BDC是等腰三角形; (2)如果A点的坐标是(1,m),求△BDC的面积; (3)在(2)的条件下,求直线BC的解析式,并判断点A′是否落在已知的抛物线上?请说明理由. |
7. 难度:中等 | |
如图,某学校校园内有一块形状为直角梯形的空地ABCD,其中AB∥DC,∠B=90°,AB=100m,BC=80m,CD=40m,现计划在上面建设一个面积为S的矩形综合楼PMBN,其中点P在线段AD上,且PM的长至少为36m. (1)求边AD的长; (2)设PA=x(m),求S关于x的函数关系式,并指出自变量x的取值范围; (3)若S=3300m2,求PA的长.(精确到0.1m) |
8. 难度:中等 | |
已知:抛物线y=x2-2x-m(m>0)与y轴交于点C,C点关于抛物线对称轴的对称点为C′点. (1)求C点,C′点的坐标(可用含m的代数式表示); (2)如果点Q在抛物线的对称轴上,点P在抛物线上,以点C,C′,P,Q为顶点的四边形是平行四边形,求Q点和P点的坐标(可用含m的代数式表示); (3)在(2)的条件下,求出平行四边形的周长. |
9. 难度:中等 | |
如图,已知平面直角坐标系中三点A(2,0),B(0,2),P(x,0)(x<0),连接BP,过P点作PC⊥PB交过点A的直线a于点C(2,y) (1)求y与x之间的函数关系式; (2)当x取最大整数时,求BC与PA的交点Q的坐标. |
10. 难度:中等 | |
如图,在平面直角坐标系中,半径分别为3和的⊙O1和⊙O2外切于原点O,在x轴上方的两圆的外公切线AB与⊙O1和⊙O2分别切于点A、B,直线AB交y轴于点C.O2D⊥O1A于点D. (1)求∠O1O2D的度数; (2)求点C的坐标; (3)求经过O1、C、O2三点的抛物线的解析式; (4)在抛物线上是否存在点P,使△PO1O2为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由. |
11. 难度:中等 | |
已知A1、A2、A3是抛物线y=x2上的三点,A1B1、A2B2、A3B3分别垂直于x轴,垂足为B1、B2、B3,直线A2B2交线段A1A3于点C. (1)如图,若A1、A2、A3三点的横坐标依次为1,2,3,求线段CA2的长; (2)如图,若将抛物线y=x2改为抛物线y=x2-x+1,A1、A2、A3三点的横坐标为连续整数,其他条件不变,求线段CA2的长; (3)若将抛物线y=x2改为抛物线y=ax2+bx+c,A1、A2、A3三点的横坐标为连续整数,其他条件不变,请猜想线段CA2的长(用a、b、c表示,并直接写出答案). |
12. 难度:中等 | |
如图,抛物线y=-x2+(m+2)x-3(m-1)交x轴于点A、B(A在B的右边),直线y=(m+1)x-3经过点A.若m<1. (1)求抛物线和直线的解析式; (2)直线y=kx(k<0)交直线y=(m+1)x-3于点P,交抛物线y=-x2+(m+2)x-3(m-1)于点M,过M点作x轴垂线,垂足为D,交直线y=(m+1)x-3于点N.问:△PMN能否为等腰三角形?若能,求k的值;若不能,请说明理由. |
13. 难度:中等 | |
附加题:若抛物线y=ax2+bx+c(a<0)经过点C(2,3),与x轴交于点M、N,且∠MCN=90°,求a的值. |
14. 难度:中等 | |
附加题:如图1,菱形纸片ABCD中,AB=1,∠B=60°,将纸片翻折(如图2),使D点落在AD所在直线上,并可在直线AD上运动,折痕为EF.当<DE<1时,设AB与DC相交于点G(如图). (1)线段AD与DG相等吗?△ADG与△BCG的面积之和是否随着DE的变化而变化?为什么? (2)设AD=x,重叠部分(图3中阴影部分)的面积为y,求出y与x之间的函数关系式,并写出自变量x的取值范围以及面积y的取值范围. |
15. 难度:中等 | |
如图所示,边长为1的正方形OABC的顶点A在x轴的正半轴上,将正方形OABC绕点O顺时针旋转30°,使点A落在抛物线y=ax2(a<0)的图象上. (1)求抛物线y=ax2的函数关系式; (2)正方形OABC继续按顺时针旋转多少度时,点A再次落在抛物线y=ax2的图象上并求这个点的坐标. (参考数据:sin30°=,cos30°=,tan30°=.) |
16. 难度:中等 | |
在平面直角坐标系xOy中,已知点A(-1,0),B(0,1),C(2,). (Ⅰ)直线l:y=kx+b过A、B两点,求k、b的值; (Ⅱ)求过A、B、C三点的抛物线Q的解析式; (Ⅲ)设(Ⅱ)中的抛物线Q的对称轴与x轴相交于点E,那么在对称轴上是否存在点F,使⊙F与直线l和x轴同时相切?若存在,求出点F的坐标;若不存在,请说明理由. |
17. 难度:中等 | |
如图,抛物线y=-x2+(6-)x+m-3与x轴交于A(x1,0)、B(x2,0)两点(x1<x2),交y轴于C点,且x1+x2=0. (1)求抛物线的解析式,并写出顶点坐标及对称轴方程. (2)在抛物线上是否存在一点P使△PBC≌△OBC?若存在,求出点P的坐标;若不存在,请说明理由. |
18. 难度:中等 | |
已知:在平面直角坐标系xOy中,一次函数y=kx-4k的图象与x轴交于点A,抛物线y=ax2+bx+c经过O、A两点. (1)试用含a的代数式表示b; (2)设抛物线的顶点为D,以D为圆心,DA为半径的圆被x轴分为劣弧和优弧两部分.若将劣弧沿x轴翻折,翻折后的劣弧落在⊙D内,它所在的圆恰与OD相切,求⊙D半径的长及抛物线的解析式; (3)设点B是满足(2)中条件的优弧上的一个动点,抛物线在x轴上方的部分上是否存在这样的点P,使得∠POA=∠OBA?若存在,求出点P的坐标;若不存在,请说明理由. |
19. 难度:中等 | |
已知一次函数y1=x,二次函数y2=x2+ (1)根据表中给出的x的值,填写表中空白处的值; (2)观察上述表格中的数据,对于x的同一个值,判断y1和y2的大小关系.并证明:在实数范围内,对于x的同一个值,这两个函数所对应的函数值y1和y2的大小关系仍然成立; (3)若把y=x换成与它平行的直线y=x+k(k为任意非零实数),请进一步探索:当k满足什么条件时,(2)中的结论仍然成立?当k满足什么条件时,(2)中的结论不能对任意的实数x都成立?并确定使(2)中的结论不成立的x的范围. |
20. 难度:中等 | |
如图,在梯形ABCD中,AD∥BC,AD=6cm,CD=4cm,BC=BD=10cm,点P由B出发沿BD方向匀速运动,速度为1cm/s;同时,线段EF由DC出发沿DA方向匀速运动,速度为1cm/s,交BD于Q,连接PE.若设运动时间为t(s)(0<t<5).解答下列问题: (1)当t为何值时,PE∥AB; (2)设△PEQ的面积为y(cm2),求y与t之间的函数关系式; (3)是否存在某一时刻t,使S△PEQ=S△BCD?若存在,求出此时t的值;若不存在,说明理由; (4)连接PF,在上述运动过程中,五边形PFCDE的面积是否发生变化?说明理由. |
21. 难度:中等 | |
如图,在菱形ABCD中,∠A=60°,AB=4,E是边AB上一动点,过点E作EF⊥AB交AD的延长线于点F,交BD于点M. (1)请判断△DMF的形状,并说明理由. (2)设EB=x,△DMF的面积为y,求y与x之间的函数关系式.并写出x的取值范围. |
22. 难度:中等 | |
如图,正方形ABCD的边长是2,M是AD的中点,点E从点A出发,沿AB运动到点B停止,连接EM并延长交射线CD于点F,过M作EF的垂线交射线BC于点G,连接EG、FG. (1)设AE=x时,△EGF的面积为y,求y关于x的函数关系式,并写出自变量x的取值范围; (2)P是MG的中点,请直接写出点P的运动路线的长. |
23. 难度:中等 | |
如图1,在梯形ABCD中,AB=BC=10cm,CD=6cm,∠C=∠D=90°. (1)如图2,动点P、Q同时以每秒1cm的速度从点B出发,点P沿BA,AD,DC运动到点C停止,点Q沿BC运动到点C停止,设P、Q同时从点B出发t秒时,△PBQ的面积为y1(cm2),求y1(cm2)关于t(秒)的函数关系式; (2)如图3,动点P以每秒1cm的速度从点B出发沿BA运动,点E在线段CD上随之运动,且PC=PE.设点P从点B出发t秒时,四边形PADE的面积为y2(cm2),求y2(cm2)关于t(秒)的函数关系式,并写出自变量t的取值范围. |
24. 难度:中等 | |
如图,在梯形ABCD中,AD∥BC,AB=AD=DC=2cm,BC=4cm,在等腰△PQR中,∠QPR=120°,底边QR=6cm,点B、C、Q、R在同一直线l上,且C、Q两点重合,如果等腰△PQR以1cm/秒的速度沿直线l箭头所示方向匀速运动,t秒时梯形ABCD与等腰△PQR重合部分的面积记为S平方厘米. (1)当t=4时,求S的值; (2)当4≤t≤10,求S与t的函数关系式,并求出S的最大值. |
25. 难度:中等 | |
如图,等腰梯形ABCD中,AB=15,AD=20,∠C=30度.点M、N同时以相同速度分别从点A、点D开始在AB、AD(包括端点)上运动. (1)设ND的长为x,用x表示出点N到AB的距离,并写出x的取值范围. (2)当五边形BCDNM面积最小时,请判断△AMN的形状. |
26. 难度:中等 | |
如图,在梯形ABCD中,AD∥BC,AD=2,BC=4,点M是AD的中点,△MBC是等边三角形. (1)求证:梯形ABCD是等腰梯形; (2)动点P、Q分别在线段BC和MC上运动,且∠MPQ=60°保持不变.设PC=x,MQ=y,求y与x的函数关系式; (3)在(2)中: ①当动点P、Q运动到何处时,以点P、M和点A、B、C、D中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数; ②当y取最小值时,判断△PQC的形状,并说明理由. |
27. 难度:中等 | |
如图,在矩形ABCD中,AB=3,AD=1,点P在线段AB上运动,设AP=x,现将纸片折叠,使点D与点P重合,得折痕EF(点E、F为折痕与矩形边的交点),再将纸片还原. (1)当x=0时,折痕EF的长为______;当点E与点A重合时,折痕EF的长为______ |
28. 难度:中等 | |
如图,在直线l上摆放有△ABC和直角梯形DEFG,且CD=6cm;在△ABC中:∠C=90°,∠A=30°,AB=4cm;在直角梯形DEFG中:EF∥DG,∠DGF=90°,DG=6cm,DE=4cm,∠EDG=60度.解答下列问题: (1)旋转:将△ABC绕点C顺时针方向旋转90°,请你在图中作出旋转后的对应图形△A1B1C,并求出AB1的长度; (2)翻折:将△A1B1C沿过点B1且与直线l垂直的直线翻折,得到翻折后的对应图形△A2B1C1,试判定四边形A2B1DE的形状并说明理由; (3)平移:将△A2B1C1沿直线l向右平移至△A3B2C2,若设平移的距离为x,△A3B2C2与直角梯形重叠部分的面积为y,当y等于△ABC面积的一半时,x的值是多少. |
29. 难度:中等 | |
如图,直线y=-3x-3分别交x轴、y轴于A、B两点,△AOB绕点O按逆时针方向旋转90°后得到△DOC,抛物线y=ax2+bx+c经过A、B、C三点. (1)填空:A(______,______)、B(______,______)、C(______,______); (2)求抛物线的函数关系式; (3)E为抛物线的顶点,在线段DE上是否存在点P,使得以C、D、P为顶点的三角形与△DOC相似?若存在,请求出点P的坐标;若不存在,请说明理由. |
30. 难度:中等 | |
如图,△ABC中AB=AC,BC=6,点D位BC中点,连接AD,AD=4,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为E. (1)试判断四边形ADCE的形状并说明理由. (2)将四边形ADCE沿CB以每秒1个单位长度的速度向左平移,设移动时间为t(0≤t≤6)秒,平移后的四边形A’D’C’E’与△ABC重叠部分的面积为S,求S关于t的函数表达式,并写出相应的t的取值范围. |