1. 难度:中等 | |
已知,在同一直角坐标系中,反比例函数y=与二次函数y=-x2+2x+c的图象交于点A(-1,m). (1)求m、c的值; (2)求二次函数图象的对称轴和顶点坐标. |
2. 难度:中等 | |
已知抛物线y=4x2-11x-3. (Ⅰ)求它的对称轴; (Ⅱ)求它与x轴、y轴的交点坐标. |
3. 难度:中等 | |
求下列函数的图象的对称轴、顶点坐标及与x轴的交点坐标. (1)y=4x2+24x+35;(2)y=-3x2+6x+2;(3)y=x2-x+3;(4)y=2x2+12x+18. |
4. 难度:中等 | |
(1)请在坐标系中画出二次函数y=-x2+2x的大致图象; (2)在同一个坐标系中画出y=-x2+2x的图象向上平移两个单位后的图象; (3)直接写出平移后的图象的解析式. 注:图中小正方形网格的边长为1. |
5. 难度:中等 | |
已知点A(-2,-c)向右平移8个单位得到点A′,A与A′两点均在抛物线y=ax2+bx+c上,且这条抛物线与y轴的交点的纵坐标为-6,求这条抛物线的顶点坐标. |
6. 难度:中等 | |
如图,抛物线y1=-x2+2向右平移1个单位得到抛物线y2,回答下列问题: (1)抛物线y2的顶点坐标______; (2)阴影部分的面积S=______; (3)若再将抛物线y2绕原点O旋转180°得到抛物线y3,求抛物线y3的解析式. |
7. 难度:中等 | |
已知抛物线C1的解析式是y=2x2-4x+5,抛物线C2与抛物线C1关于x轴对称,求抛物线C2的解析式. |
8. 难度:中等 | |
已知二次函数y=-2x2,怎样平移这个函数的图象,才能使它经过(0,1)和(1,6)两点?写出平移后的函数解析式. |
9. 难度:中等 | |
已知x1,x2是关于x的方程(x-2)(x-m)=(p-2)(p-m)的两个实数根. (1)求x1,x2的值; (2)若x1,x2是某直角三角形的两直角边的长,问当实数m,p满足什么条件时,此直角三角形的面积最大?并求出其最大值. |
10. 难度:中等 | |
如图所示,已知A,B两点的坐标分别为(28,0)和(0,28).动点P从A点开始在线段AO上以每秒3个单位的速度向原点O运动,动直线EF从x轴开始每秒1个单位的速度向上平行移动(即EF∥x轴),并且分别与y轴,线段AB交于E,F点,连接FP,设动点P与动直线EF同时出发,运动时间为t秒. (1)当t=1秒时,求梯形OPFE的面积,当t为何值时,梯形OPFE的面积最大,最大面积是多少? (2)当梯形OPFE的面积等于三角形APF的面积时,求线段PF的长; (3)设t的值分别取t1,t2时(t1≠t2),所对应的三角形分别为△AF1P1和△AF2P2.试判断这两个三角形是否相似,请证明你的判断. |
11. 难度:中等 | |
已知:如图,在Rt△ABC中,∠C=90°,BC=4,AC=8,点D在斜边AB上,分别作DE⊥AC,DF⊥BC,垂足分别为E,F,得四边形DECF,设DE=x,DF=y. (1)用含y的代数式表示AE,得AE=______; (2)求y与x之间的函数关系式,并求出x的取值范围; (3)设四边形DECF的面积为S,求出S的最大值. |