1. 难度:中等 | |
已知二次函数y=ax2+bx+c的图象与x轴交于点(-2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方.下列结论:①4a-2b+c=0;②a<b<0;③2a+c>0;④2a-b+1>0.其中正确结论的个数是 个. |
2. 难度:中等 | |
抛物线y=2x2+8x+m与x轴只有一个公共点,则m的值为 . |
3. 难度:中等 | |||||||||||||||||
抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:
|
4. 难度:中等 | |
开口向下的抛物线y=(m2-2)x2+2mx+1的对称轴经过点(-1,3),则m= . |
5. 难度:中等 | |
二次函数y=x2-2x-3与x轴两交点之间的距离为 . |
6. 难度:中等 | |
抛物线y=x2+bx+c与x轴的正半轴交于A,B两点,与y轴交于C点,且线段AB的长为1,△ABC的面积为1,则b的值是 . |
7. 难度:中等 | |
若抛物线y=x2-2x-3与x轴分别交于A,B两点,则AB的长为 . |
8. 难度:中等 | |
二次函数y=-x2+6x-9的图象与x轴的交点坐标为 . |
9. 难度:中等 | |
抛物线y=x2-4x+3的顶点及它与x轴的交点三点连线所围成的三角形面积是 . |
10. 难度:中等 | |
已知二次函数y=ax2+bx+c(a≠0)的顶点坐标(-1,-3.2)及部分图象(如图),由图象可知关于x的方程ax2+bx+c=0的两个根分别是x1=1.3和x2= . |
11. 难度:中等 | |
二次函数y=ax2+bx+c和一次函数y=mx+n的图象如图所示,则ax2+bx+c≤mx+n时,x的取值范围是 . |
12. 难度:中等 | |
求二次函数y=x2-2x-1的顶点坐标及它与x轴的交点坐标. |
13. 难度:中等 | |
已知抛物线y=x2+x-. (1)用配方法求出它的顶点坐标和对称轴; (2)若抛物线与x轴的两个交点为A、B,求线段AB的长. |
14. 难度:中等 | |||||||||||||||||
下表给出了代数式x2+bx+c与x的一些对应值:
(2)设y=x2+bx+c,则当x取何值时,y>0; (3)请说明经过怎样平移函数y=x2+bx+c的图象得到函数y=x2的图象? |
15. 难度:中等 | |
已知二次函数的图象以A(-1,4)为顶点,且过点B(2,-5) ①求该函数的关系式; ②求该函数图象与坐标轴的交点坐标; ③将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积. |
16. 难度:中等 | |
(1)用配方法把二次函数y=x2-4x+3变成y=(x-h)2+k的形成. (2)在直角坐标系中画出y=x2-4x+3的图象. (3)若A(x1,y1),B(x2,y2)是函数y=x2-4x+3图象上的两点,且x1<x2<1,请比较y1,y2的大小关系.(直接写结果) (4)把方程x2-4x+3=2的根在函数y=x2-4x+3的图象上表示出来. |
17. 难度:中等 | |
已知:关于x的一元二次方程mx2-(3m+2)x+2m+2=0(m>0). (1)求证:方程有两个不相等的实数根; (2)设方程的两个实数根分别为x1,x2(其中x1<x2).若y是关于m的函数,且y=x2-2x1,求这个函数的解析式; (3)在(2)的条件下,结合函数的图象回答:当自变量m的取值范围满足什么条件时,y≤2m. |
18. 难度:中等 | |
二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题: (1)写出方程ax2+bx+c=0的两个根; (2)写出不等式ax2+bx+c>0的解集; (3)写出y随x的增大而减小的自变量x的取值范围; (4)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围. |
19. 难度:中等 | |
已知关于x的二次函数y=x2-mx+与y=x2-mx-,这两个二次函数的图象中的一条与x轴交于A,B两个不同的点. (1)试判断哪个二次函数的图象经过A,B两点; (2)若A点坐标为(-1,0),试求B点坐标; (3)在(2)的条件下,对于经过A,B两点的二次函数,当x取何值时,y的值随x值的增大而减小. |
20. 难度:中等 | |
已知二次函数y=2x2-mx-m2. (1)求证:对于任意实数m,该二次函数图象与x轴总有公共点; (2)若该二次函数图象与x轴有两个公共点A,B,且A点坐标为(1,0),求B点坐标. |
21. 难度:中等 | |
已知抛物线y=x2-2x-8. (1)试说明该抛物线与x轴一定有两个交点. (2)若该抛物线与x轴的两个交点分别为A、B(A在B的左边),且它的顶点为P,求△ABP的面积. |
22. 难度:中等 | |
已知:二次函数y=x2-2(m-1)x+m2-2m-3,其中m为实数. (1)求证:不论m取何实数,这个二次函数的图象与x轴必有两个交点; (2)设这个二次函数的图象与x轴交于点A(x1,0)、B(x2,0),且x1、x2的倒数和为,求这个二次函数的解析式. |
23. 难度:中等 | |
已知:二次函数y=x2-mx-4. (1)求证:该函数的图象一定与x轴有两个不同的交点; (2)设该函数的图象与x轴的交点坐标为(x1,0)、(x2,0),且,求m的值,并求出该函数图象的顶点坐标. |
24. 难度:中等 | |
一元二次方程x2+2x-3=0的二根x1,x2(x1<x2)是抛物线y=ax2+bx+c与x轴的两个交点B,C的横坐标,且此抛物线过点A(3,6). (1)求此二次函数的解析式; (2)用配方法求此抛物线的顶点为P; (3)当x取什么值时,y随x增大而减小? |
25. 难度:中等 | |
已知二次函数y=x2+bx+c的图象与x轴的两个交点的横坐标分别为x1、x2,一元二次方程x2+b2x+20=0的两实根为x3、x4,且x2-x3=x1-x4=3,求二次函数的解析式,并写出顶点坐标. |
26. 难度:中等 | |
利用图象解一元二次方程x2+x-3=0时,我们采用的一种方法是:在平面直角坐标系中画出抛物线y=x2和直线y=-x+3,两图象交点的横坐标就是该方程的解. (1)填空:利用图象解一元二次方程x2+x-3=0,也可以这样求【解析】 在平面直角坐标系中画出抛物线y=______和直线y=-x,其交点的横坐标就是该方程的解. (2)已知函数y=-的图象(如图所示),利用图象求方程-x+3=0的近似解.(结果保留两个有效数字) |
27. 难度:中等 | |||||||
小明在复习数学知识时,针对“求一元二次方程的解”,整理了以下的几种方法,请你按有关内容补充完整:
|
28. 难度:中等 | |
利用二次函数的图象求下列一元二次方程的近似根. (1)x2-2x-1=0;(2)x2+5=4x. |
29. 难度:中等 | |
如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0),B(3,2). (1)求m的值和抛物线的解析式; (2)求不等式x2+bx+c>x+m的解集.(直接写出答案) |