1. 难度:中等 | |
如图,将含30°角的直角三角板ABC(∠B=30°)绕其直角顶点A逆时针旋转α解(0°<α<90°),得到Rt△ADE,AD与BC相交于点M,过点M作MN∥DE交AE于点N,连接NC.设BC=4,BM=x,△MNC的面积为S△MNC,△ABC的面积为S△ABC. (1)求证:△MNC是直角三角形; (2)试求用x表示S△MNC的函数关系式,并写出x的取值范围; (3)以点N为圆心,NC为半径作⊙N, ①当直线AD与⊙N相切时,试探求S△MNC与S△ABC之间的关系; ②当S△MNC=S△ABC时,试判断直线AD与⊙N的位置关系,并说明理由. |
2. 难度:中等 | |
如图,点C是半圆O的半径OB上的动点,作PC⊥AB于C.点D是半圆上位于PC左侧的点,连接BD交线段PC于E,且PD=PE. (1)求证:PD是⊙O的切线; (2)若⊙O的半径为,PC=,设OC=x,PD2=y. ①求y关于x的函数关系式; ②当时,求tanB的值. |
3. 难度:中等 | |
如图,在直角坐标系中,点A的坐标为(-2,0),⊙P刚好与x轴相切于点A,⊙P交y的正半轴于点B,点C,且BC=4. (1)求半径PA的长; (2)求证:四边形CAPB为菱形; (3)有一开口向下的抛物线过O,A两点,当它的顶点不在直线AB的上方时,求函数表达式的二次项系数a的取值范围. |
4. 难度:中等 | |
如图,等腰△OAB中,OA=OB,以点O为圆心作圆与底边AB相切于点C. 求证:AC=BC. |
5. 难度:中等 | |
如图,已知四边形ABCD内接于⊙O,A是的中点,AE⊥AC于A,与⊙O及CB的延长线分别交于点F、E,且,EM切⊙O于M. (1)求证:△ADC∽△EBA; (2)求证:AC2=BC•CE; (3)如果AB=2,EM=3,求cot∠CAD的值. |
6. 难度:中等 | |
如图是某居民小区的一块直角三角形空地ABC,某斜边AB=100米,直角边AC=80米.现要利用这块空地建一个矩形停车场DCFE,使得D点在BC边上,E、F分别是AB、AC边的中点. (1)求另一条直角边BC的长度; (2)求停车场DCFE的面积; (3)为了提高空地利用律,现要在剩余的△BDE中,建一个半圆形的花坛,使它的圆心在BE边上,且使花坛的面积达到最大,请你在原图中画出花坛的草图,求出它的半径(不要求说明面积最大的理由),并求此时直角三角形空地ABC的总利用率是百分之几(精确到1%). |
7. 难度:中等 | |
如图,AB是⊙O的直径,AE平分∠BAC交⊙O于点E,过E作⊙O的切线ME交AC于点D.试判断△AED的形状,并说明理由. |
8. 难度:中等 | |
在四边形ABCD中,AB⊥BC,DC⊥BC,AB=a,DC=b,BC=a+b,且a≤b.取AD的中点P,连接PB、PC. (1)试判断三角形PBC的形状; (2)在线段BC上,是否存在点M,使AM⊥MD?若存在,请求出BM的长;若不存在,请说明理由. |
9. 难度:中等 | |
如图,直线l与⊙O相交于A,B两点,且与半径OC垂直,垂足为H,已知AB=16cm,. (1)求⊙O的半径; (2)如果要将直线l向下平移到与⊙O相切的位置,平移的距离应是多少?请说明理由. |
10. 难度:中等 | |
如图,⊙O的半径OC=10cm,直线l⊥CO,垂足为H,交⊙O于A,B两点,AB=16cm,直线l平移多少厘米时能与⊙O相切? |
11. 难度:中等 | |
如图,AB是⊙O的切线,A为切点,AC是⊙O的弦,过O作OH⊥AC于点H.若OH=2,AB=12,BO=13. 求:(1)⊙O的半径; (2)sin∠OAC的值; (3)弦AC的长.(结果保留两个有效数字) |
12. 难度:中等 | |
如图是两个半圆,点O为大半圆的圆心,AB是大半圆的弦关与小半圆相切,且AB=24.问:能求出阴影部分的面积吗?若能,求出此面积;若不能,试说明理由. |
13. 难度:中等 | |
如图,在直角坐标系中,点M在y轴的正半轴上,⊙M与x轴交于A,B两点,AD是⊙M的直径,过点D作⊙M的切线,交x轴于点C.已知点A的坐标为(-3,0),点C的坐标为(5,0). (1)求点B的坐标和CD的长; (2)过点D作DE∥BA,交⊙M于点E,连接AE,求AE的长. |
14. 难度:中等 | |
如图,AB是⊙O的直径,P为AB延长线上任意一点,C为半圆ACB的中点,PD切⊙O于点D,连接CD交AB于点E. 求证:(1)PD=PE; (2)PE2=PA•PB. |
15. 难度:中等 | |
在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D. (1)求线段AD的长度; (2)点E是线段AC上的一点,试问当点E在什么位置时,直线ED与⊙O相切?请说明理由. |
16. 难度:中等 | |
如图,AB是半圆O的直径,C为半圆上一点,N是线段BC上一点(不与B﹑C重合),过N作AB的垂线交AB于M,交AC的延长线于E,过C点作半圆O的切线交EM于F. (1)求证:△ACO∽△NCF; (2)NC:CF=3:2,求sinB的值. |
17. 难度:中等 | |
如图,A、B为⊙O上的点,AC是弦,CD是⊙O的切线,C为切点,AD⊥CD于点D,若AC为∠BAD的平分线. 求证:(1)AB为⊙O的直径;(2)AC2=AB•AD. |
18. 难度:中等 | |
如图,AC是圆O的直径,AC=10厘米,PA,PB是圆O的切线,A,B为切点,过A作AD⊥BP,交BP于D点,连接AB,BC. (1)求证:△ABC∽△ADB; (2)若切线AP的长为12厘米,求弦AB的长. |
19. 难度:中等 | |
如图,⊙O的直径AB是4,过B点的直线MN是⊙O的切线,D、C是⊙O上的两点,连接AD、BD、CD和BC. (1)求证:∠CBN=∠CDB; (2)若DC是∠ADB的平分线,且∠DAB=15°,求DC的长. |
20. 难度:中等 | |
如图,CE、CB是半圆O的切线,切点分别为D、B,AB为半圆O的直径.CE与BA的延长线交于点E,连接OC、OD. (1)求证:△OBC≌△ODC; (2)若已知DE=a,AE=b,BC=c,请你思考后,从a,b,c三个已知数中选用适当的数,设计出计算半圆O的半径r的一种方案: ①方案中你选用的已知数是______; ②写出求解过程(结果用字母表示). |
21. 难度:中等 | |
如图,已知AB是⊙O的直径,AB=2,∠BAC=30°,点C在⊙O上,过点C与⊙O相切的直线交AB的延长线于点D,求线段BD的长. |
22. 难度:中等 | |
如图,AB为⊙O直径,BC切⊙O于B,CO交⊙O交于D,AD的延长线交BC于E,若∠C=25°,求∠A的度数. |
23. 难度:中等 | |
如图,在锐角△ABC中,BA=BC,点O是边AB上的一个动点(不与点A、B重合),以O为圆心,OA为半径的圆交边AC于点M,过点M作⊙O的切线MN交BC于点N. (1)当OA=OB时,求证:MN⊥BC; (2)分别判断OA<OB、OA>OB时,上述结论是否成立,请选择一种情况,说明理由. |
24. 难度:中等 | |
如图①,AB是⊙O的直径,AC是弦,直线EF和⊙O相切于点C,AD⊥EF,垂足为D. (1)求证:∠DAC=∠BAC; (2)若把直线EF向上平行移动,如图②,EF交⊙O于G、C两点,若题中的其它条件不变,这时与∠DAC相等的角是哪一个?为什么? |
25. 难度:中等 | |
如图(1),四边形ABCD是⊙O的内接四边形,点C是的中点,过点C的切线与AD的延长线交于点E. (1)求证:AB•DE=CD•BC; (2)如果四边形ABCD仍是⊙O的内接四边形,点C在劣弧上运动,点E在AD的延长线上运动,切线CE变为割线EFC,请问要使(1)的结论成立还需要具备什么条件?请你在图(2)上画出示意图,标明有关字母,不要求进行证明. |
26. 难度:中等 | |
如图,四边形ABCD内接于⊙O,过点A作⊙O的切线交CD的延长线于点E,若AB:DA=BC:ED.求证:AD=AB. |
27. 难度:中等 | |
如图,△ABC中,AB=AC,以AC为直径的⊙O与AB相交于点E,点F是BE的中点. (1)DF与⊙O的位置关系是______(填“相切”或“相交”). (2)若AE=14,BC=12,BF的长为______. |
28. 难度:中等 | |
如图1,在直角坐标系中,点A的坐标为(1,0),以OA为边在第四象限内作等边△AOB,点C为x轴的正半轴上一动点(OC>1),连接BC,以BC为边在第四象限内作等边△CBD,直线DA交y轴于点E. (1)试问△OBC与△ABD全等吗?并证明你的结论; (2)随着点C位置的变化,点E的位置是否会发生变化?若没有变化,求出点E的坐标;若有变化,请说明理由; (3)如图2,以OC为直径作圆,与直线DE分别交于点F、G,设AC=m,AF=n,用含n的代数式表示m. |
29. 难度:中等 | |
如图,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB延长线上一点,AE⊥DC交DC的延长线于点E,且AC平分∠EAB. (1)求证:DE是⊙O的切线; (2)若AB=6,AE=,求BD和BC的长. |
30. 难度:中等 | |
如图,在平面直角坐标系中,以A(5,1)为圆心,以2个单位长度为半径的⊙A交x轴于点B、C,解答下列问题: (1)将⊙A向左平移______个单位长度与y轴首次相切,得到⊙A′,此时点A′的坐标为______,阴影部分的面积S=______; (2)求BC的长. |