1. 难度:中等 | |
已知:如图,CD是⊙O的直径,AE切⊙O于点B,DC的延长线交AB于点A,∠A=20°,则∠DBE= 度. |
2. 难度:中等 | |
为了测量一个圆铁环的半径,某同学用了如下方法,将铁环平放在水平桌面上,用有一个角为30°的直角三角板和刻度尺按如图所示的方法得到相关数据,进而求出铁环半径,若测得PA=5cm,则铁环的半径是 cm. |
3. 难度:中等 | |
如图,PA切⊙O于点A,PC过点O且于点B、C,若PA=6cm,PB=4cm,则⊙O的半径为 cm. |
4. 难度:中等 | |
图中的同心圆,大⊙O的弦AB切小⊙O于P,且AB=6,则阴影部分即圆环的面积为 . |
5. 难度:中等 | |
如图,PA是⊙O的切线,切点为A,∠APO=36°,则∠AOP的度数为 度. |
6. 难度:中等 | |
如图,AB、AC是⊙O的两条切线,切点分别为B、C,D是优弧BC上的一点,已知∠BAC=80°,那么∠BDC= 度. |
7. 难度:中等 | |
如图,⊙O的半径为12cm,B为⊙O外一点,OB交⊙O于点A,AB=OA,动点P从点A出发,以2πcm/s的速度沿圆周逆时针运动,当点P回到点A就停止运动.当点P运动的时间为 s时,BP与⊙O相切. |
8. 难度:中等 | |
如图,在△ABC中,AB=AC,∠C=72°,⊙O过AB两点且与BC切于B,与AC交于D,连接BD,若BC=-1,则AC= . |
9. 难度:中等 | |
如图:PA、PB切⊙O于A、B,过点C的切线交PA、PB于D、E,PA=8cm,则△PDE的周长为 cm. |
10. 难度:中等 | |
如图,AC⊥BC于点C,BC=a,CA=b,AB=c,⊙O与直线AB、BC、CA都相切,则⊙O的半径等于 . |
11. 难度:中等 | |
如图,小明同学测量一个光盘的直径,他只有一把直尺和一块三角板,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3.5cm,则此光盘的直径是 cm. |
12. 难度:中等 | |
如图,PT切⊙O于点T,直径BA的延长线交PT于点P,若PT=4,PA=2,则⊙O的半径长是 . |
13. 难度:中等 | |
如图,Rt△ABC中,∠C=90°,AC=6,BC=8.则△ABC的内切圆半径r= . |
14. 难度:中等 | |
如图,AB为半圆的直径,C是半圆弧上一点,正方形DEFG的一边DG在直径AB上,另一边DE过△ABC的内切圆圆心O,且点E在半圆弧上. ①若正方形的顶点F也在半圆弧上,则半圆的半径与正方形边长的比是 ; ②若正方形DEFG的面积为100,且△ABC的内切圆半径r=4,则半圆的直径AB= . |
15. 难度:中等 | |
已知直角三角形两条直角边的长是3和4,则其内切圆的半径是 . |
16. 难度:中等 | |
如图,直线a、b、c表示三条互相交叉的公路,现要建一个货物中转站.要求它到三条公路的距离相等,则可供选择的地址有 处. |
17. 难度:中等 | |
如图,△ABC中,∠C=90°,BC=4,AC=3,⊙O内切于△ABC,则阴影部分面积为 . |
18. 难度:中等 | |
如图,在平面直角坐标系中,⊙C与y轴相切,且C点坐标为(1,0),直线l过点A(-1,0),与⊙C相切于点D,求直线l的解析式. |
19. 难度:中等 | |
如图,⊙O的直径AB=12cm,AM和BN是它的两条切线,DE切⊙O于E,交AM于D,BN于C,设AD=x,BC=y,求y与x的函数关系式. |
20. 难度:中等 | |
如图,已知直角坐标系中一条圆弧经过正方形网格的格点A、B、C. (1)用直尺画出该圆弧所在圆的圆心M的位置; (2)若A点的坐标为(0,4),D点的坐标为(7,0),试验证点D是否在经过点A、B、C的抛物线上; (3)在(2)的条件下,求证:直线CD是⊙M的切线. |
21. 难度:中等 | |
如图,AB是⊙O的直径,AE平分∠BAC交⊙O于点E,过E作⊙O的切线ME交AC于点D.试判断△AED的形状,并说明理由. |
22. 难度:中等 | |
如图,已知正方形ABCD的边长为4cm,动点P从点B出发,以2cm/s的速度、沿B→C→D方向,向点D运动;动点Q从点A出发,以1cm/s的速度、沿A→B方向,向点B运动.若P、Q两点同时出发,运动时间为t秒. (1)连接PD、PQ、DQ,设△PQD的面积为S,试求S与t之间的函数关系式; (2)当点P在BC上运动时,是否存在这样的t,使得△PQD是等腰三角形?若存在,请求出符合条件的t的值;若不存在,请说明理由; (3)以点P为圆心,作⊙P,使得⊙P与对角线BD相切.问:当点P在CD上运动时,是否存在这样的t,使得⊙P恰好经过正方形ABCD的某一边的中点若存在,请求出符合条件的t的值;若不存在,请说明理由. |
23. 难度:中等 | |
如图,AB是⊙O的切线,A为切点,AC是⊙O的弦,过O作OH⊥AC于点H.若OH=2,AB=12,BO=13. 求:(1)⊙O的半径; (2)sin∠OAC的值; (3)弦AC的长.(结果保留两个有效数字) |
24. 难度:中等 | |
如图,AB是⊙O的直径,且AB=10,直线CD交⊙O于C、D两点,交AB于E,OP⊥CD于P,∠PEO=45°,OP=. (1)求线段CD的长; (2)试问将直线CD通过怎样的变换才能与⊙O切于B或A. |
25. 难度:中等 | |
如图①,AB是⊙O的直径,AC是弦,直线EF和⊙O相切于点C,AD⊥EF,垂足为D. (1)求证:∠DAC=∠BAC; (2)若把直线EF向上平行移动,如图②,EF交⊙O于G、C两点,若题中的其它条件不变,这时与∠DAC相等的角是哪一个?为什么? |
26. 难度:中等 | |
如图,P为正比例函数y=x图象上的一个动点,⊙P的半径为3,设点P的坐标为(x,y). (1)求⊙P与直线x=2相切时点P的坐标. (2)请直接写出⊙P与直线x=2相交、相离时x的取值范围. |
27. 难度:中等 | |
等腰直角△ABC和⊙O如图放置,已知AB=BC=1,∠ABC=90°,⊙O的半径为1,圆心O与直线AB的距离为5.现△ABC以每秒2个单位的速度向右移动,同时△ABC的边长AB、BC又以每秒0.5个单位沿BA、BC方向增大. (1)当△ABC的边(BC边除外)与圆第一次相切时,点B移动了多少距离? (2)若在△ABC移动的同时,⊙O也以每秒1个单位的速度向右移动,则△ABC从开始移动,到它的边与圆最后一次相切,一共经过了多少时间? (3)在(2)的条件下,是否存在某一时刻,△ABC与⊙O的公共部分等于⊙O的面积?若存在,求出恰好符合条件时两个图形移动了多少时间?若不存在,请说明理由. |
28. 难度:中等 | |
有一长方形餐厅,长10米,宽7米,现只摆放两套同样大小的圆桌和椅子,一套圆桌和椅子占据的地面部分看成半径为1.5米的圆形(如图所示).在保证通道最狭窄处的宽度不小于0.5米的前提下,此餐厅内能否摆下三套或四套同样大小的圆桌和椅子呢?请在摆放三套和四套的两种方案中选取一种,在右下方14×20方格网内划出设计示意图. |
29. 难度:中等 | |
如图,正方形ABCD的边长为5cm,动点P从点C出发,沿折线C-B-A-D向终点D运动,速度为acm/s;动点Q从点B出发,沿对角线BD向终点D运动,速度为cm/s.当其中一点到达自己的终点时,另一点也停止运动.当点P、点Q同时从各自的起点运动时,以PQ为直径的⊙O与直线BD的位置关系也随之变化,设运动时间为t(s). (1)写出在运动过程中,⊙O与直线BD所有可能的位置关系______; (2)在运动过程中,若a=3,求⊙O与直线BD相切时t的值; (3)探究:在整个运动过程中,是否存在正整数a,使得⊙O与直线BD相切两次?若存在,请直接写出符合条件的两个正整数a及相应的t的值;若不存在,请说明理由. |
30. 难度:中等 | |
在同一平面内,已知点O到直线l的距离为5,以点O为圆心,r为半径画圆.探究、归纳: (1)当r=______时,⊙O上有且只有一个点到直线l的距离等于3; (2)当r=______时,⊙O上有且只有三个点到直线l的距离等于3; (3)随着r的变化,⊙O上到直线l的距离等于3的点的个数有哪些变化并求出相对应的r的值或取值范围(不必写出计算过程). |